

Reno Office

815 Maestro Drive Reno, Nevada 89511 Ph: 775.829.2245 Fax: 775.829.2213

Las Vegas Office

6280 South Valley View Boulevard Suite 604

Las Vegas, Nevada 89118 Ph: 702.260.4961 Fax: 702.260.4968

www.mcgin.com

- Site Remediation
- Soil & Groundwater Investigations
- Closure Optimization
- Brownfields Redevelopment
- Phase I Assessments
- Permitting and Compliance
- SPCC and SWPP Plans
- Groundwater Modeling
- UST Services
- GIS and GPS Project Interfacing
- Litigation Support/Expert Witness
- · Toxic Release Inventory Reporting

REPORT OF FINDINGS

ASBESTOS AND LEAD BASED PAINT ASSESSMENT

McGill Ball Park
56 South 4th Street
McGill
Nevada

Prepared for:

Nye County 2101 East Calvada Boulevard, Suite 100 Pahrump, Nevada 89048

On behalf of: Rural Desert Southwest Brownfields Coalition

October 15, 2012 Project No. 804.11.001 – Task T2W-HZW

TABLE OF CONTENTS

1.	INTR	ODUCTION	1
		Site LocationBackground	1
2.	ASBE	ESTOS CONTAINING MATERIAL INSPECTION	1
	2.1 2.2	ACM Inspection ActivitiesACM Analytical Results	2
3.	LEAD	D-BASED PAINT (LBP) SAMPLING ASSESSMENT	3
		LBP Inspection ActivitiesLead-Based Paint Analytical Results	
4.	CON	CLUSIONS/RECOMMENDATIONS	5
		Asbestos AssessmentLead Based Paint Assessment	
5.	LIMIT	ATIONS	6
6.	CLOS	SURE	7
7.	REFE	RENCES	8

APPENDICES

Appendix A Macrotec Renovation Investigation Report with Analytical Results

1. INTRODUCTION

McGinley and Associates, Inc. (MGA) is pleased to submit this report that summarizes the results for hazardous substances assessment activities that were conducted at the Pahranagat Middle School Multi-Use Building (Alamo Building) located in Alamo, Nevada. These assessment activities are being funded through the Rural Desert Southwest Brownfields Coalition (RDSBC) Grant

The Alamo Building is owned by the Lincoln County School District (LCSD) and is located in Alamo, Nevada within the Pahranagat Middle/High School campus. The Alamo Building is split into five distinct portions including a shower/locker room, sports equipment storage room, weightlifting equipment room, maintenance equipment storage room, and landscaping equipment storage room. The flooring observed in the rooms consist of 9x9 floor tiles, carpeting, and 12x12 floor tiles. The exterior of the building appears to be covered with transite siding. Window sills and other painted wood surfaces were observed to be flaking. The school district is proposing renovations on the building in the near future.

Therefore, the purpose of this project was to assess the presence of asbestos and lead-based paint within building materials that are proposed to be renovated. Jason McAllister, a Nevada Asbestos Abatement Consultant, License No. IM0901, and a Nevada EPA Lead Inspector, certification # NV-I-125427-1, conducted these services at the subject site.

1.1 Site Location

The site is located at 262 Weeping Willow Avenue, Alamo, Lincoln County, Nevada. The subject property lies in the Pahranagat Valley region of southeastern Nevada. It exists on a portion of Lincoln County Assessor's Parcel number 004-101-01 and is located within Section 08, Township 107 South, Range 61 East of the Mount Diablo Base and Meridian (MDB&M).

1.2 Background

The Alamo Building was originally used as a military barracks at Nellis Air Force Base in Las Vegas, Nevada. The building is wood framed structure, rectangular in shape, and measures approximately 30 feet wide by 90 feet long. The building was acquired through donation by the United States Air Force (U.S.A.F.) and transported from Nellis Air Force Base to its existing location during the 1960s. Upon its delivery the building was placed on footings and a stem wall. The Pahranagat Middle School has utilized the building on campus since its gifting in the 1960s. It appears that a renovation occurred on the northernmost portion of the building within the last 20 years. The renovation included the connection of the subject property with the current middle school building. The purpose of the renovation was to create a locker room for the students. With the exception of drop-down ceilings and installation of carpet, it appears that the remaining portion of the subject property has not been renovated. Currently, the building is utilized for a shower/locker room, sports equipment storage, weightlifting room, and maintenance equipment storage

2. ASBESTOS CONTAINING MATERIAL (ACM) INSPECTION

2.1 ACM Inspection Activities

On September 18, 2012, an EPA accredited, and State of Nevada licensed asbestos consultant from Macrotec conducted an asbestos assessment at the above referenced facility. Oversight for all field activities and sampling assistance were provided by MGA. The assessment was

conducted to identify the presence of any materials containing asbestos pursuant to the requirements of:

- Nevada Occupational Health and Safety Administration (OSHA) NAC 618.960;
- OSHA's "Criteria to rebut the designation of installed material as PACM (Presumed Asbestos Containing Material)", 1926.1101(k)(5); and
- United States Environmental Protection Agency (EPA): 40 CFR Part 61, National Emission Standard for Hazardous Air Pollutants (NESHAP).

These regulations outline inspection and abatement requirements for materials containing asbestos.

Prior to sample collection, homogenous suspect materials were identified during an initial walk through of the school building. Once identified, samples of suspect materials were collected per the EPA-approved sampling and analysis plan (SAP) (MGA, 2012), sealed in their own zipper locked plastic containers, and labeled with a unique identification number. Proper decontamination techniques described within the SAP were utilized after each sample was collected. Each sample was recorded on Macrotec's chain of custody form which accompanied all samples to the analytical laboratory.

The suspect ACM samples were analyzed for asbestos fibers utilizing Polarized Light Microscopy (PLM). Bulk sample analysis was conducted in accordance with the EPA's "Test Method for the Determination of Asbestos in Bulk Building Materials, EPA/600/R-93/116, 1993. The laboratory analytical reports and the chain of custody record are attached in Appendix A with the full assessment report.

2.2 ACM Analytical Results

In accordance with OSHA 29 CFR 1926.1101 and NESHAPS 40 CFR 61.141 the definition of an asbestos containing material is "any material which contains more than one percent asbestos by weight".

Analytical results indicated that four of the 28 bulk samples that were collected during this inspection, were positive for containing asbestos in excess of one percent. Table 1 below, summarizes positive materials identified, sample locations and asbestos content. The remaining samples that were collected during this investigation were "none detected" for containing asbestos.

Table 1 Asbestos Containing Material Results (Asbestos Containing Only) McGill Ball Park 56 S. 4th Street McGill, Nevada

Sample No.	Material	Sample Location	Asbestos % Type
LVBEC005-AB10	9x9 Floor Tile - Beige	Maintenance office	3% Chrysotile
LVBEC005-AB13	9x9 Floor Tile – Tan	Hall – Adj. to exterior door	2% Chrysotile
LVBEC005-AB16	9x9 Floor Tile – Tan	Weight room – SE corner	2% Chrysotile
LVBEC005-AB23	Cementitious Exterior Siding	East side – center	15% Chrysotile

These sample results are limited to the materials that were identified and sampled during this inspection.

3. LEAD-BASED PAINT (LBP) SAMPLING ASSESSMENT

3.1 LBP Inspection Activities

On September 18, 2012, an EPA-certified inspector conducted a LBP assessment of suspect painted surface coatings at the school building. Oversight for all field activities and sampling assistance were provided by MGA. Per the SAP, X-Ray Fluoroescence (XRF) readings were collected to identify the presence and content level of lead above the action level in compliance with the United States Department of Housing and Urban Development (HUD) and the EPA. In addition, Macrotec collected bulk paint samples to confirm the readings determined by the XRF analyzer. These were also collected to identify the presence and content level of lead for compliance with the OSHA and EPA regulatory requirements pertaining to worker protection and waste disposal.

Prior to sample collection, an initial walk through of the building was conducted to identify homogenous suspect materials that may contain lead based paint. Once identified, painted surfaces were tested utilizing a Niton XLp300A paint analyzer. Per the SAP, the instrument was calibrated prior to and after sample collection. Confirmatory paint chip samples were collected per the SAP, sealed in their own zipper locked plastic containers and labeled with a unique identification number. Proper decontamination techniques described within the SAP were utilized after each sample was collected. Each sample was recorded on Macrotec's chain of custody form which accompanied all samples to the analytical laboratory. The confirmatory samples were analyzed for lead in accordance with the EPA's Method SW846-7420.

3.2 Lead-Based Paint Analytical Results

The Nevada Division of Industrial Relations and the EPA defines lead-based paint as paint containing 0.5 percent (5,000 mg/kg) or greater, lead by weight.

For this assessment, 106 XRF paint readings were collected within the facility. Table 2 below lists all materials found to be above the HUD action level of 1.0 mg/cm².

Table 2 XRF Results (Above HUD Action Level) McGill Ball Park 56 S. 4th Street McGill, Nevada

Material	Location	Result mg/cm ²
White and Green – Wood Window Sash	Four windows within maintenance office and one window within the parts room	2.2-2.6
Green – Window Pane	Window within the parts room	11.1
Yellow and White – Fiberboard Walls and Ceilings	Walls and ceilings within the parts room and hall closet	1.2-3.0
White, Yellow, and Blue – Exterior Transite Siding	Three exterior walls of building	3.7-6.0
White, Yellow, and Blue – Wood Doorframes	Exterior door frames	3.4-5.1
White, Yellow, and Blue – Wood Window Frames and Sills	Exterior window frames	4.9-12.9
White – Wood Joists and Soffits (assumed to be beneath newer metal blue fascia)	Perimeter of the exterior of the building beneath the roof line	14.4-17.3

In addition, six bulk paint chip samples were collected to confirm XRF results found during the assessment. Table 3 below summarizes the results found for confirmatory samples.

Table 3 Results of Confirmatory Bulk Paint Samples McGill Ball Park 56 S. 4 th Street McGill, Nevada										
Material	Location	Lab Result (mg/kg)	XRF Result							
White – Wood Window Frame	Exterior – West Side	131,033	> 1.0 mg/cm ²							
White – Wood Soffit	Exterior – West Side	144,096	$> 1.0 \text{ mg/cm}^2$							
Blue – Wood Base	Exterior – West Side	326	Negative							
White – Wood Window Sash	Interior – Maintenance Office (SW Corner)	19,364	> 1.0 mg/cm ²							
White – Wood Window Sill	Exterior – East Side	1,507	Negative							
White – Metal Door	Interior – Equipment Storage Room (Doorway)	220	Negative							

Results for the bulk paint samples indicate a confirmation of results found during collection of field XRF data.

Room (Doorway)

4. CONCLUSIONS/RECOMMENDATIONS

4.1 **Asbestos Assessment**

Based on information obtained from conducting this asbestos inspection, several samples collected from the building were identified to contain greater than 1% chrysotile asbestos.

EPA and Nevada Department of Industrial Relations regulations require the removal of all regulated asbestos-containing materials (RACM) prior to any renovation or demolition that could impact or disturb RACM. Therefore, prior to the disturbance of these materials, it is recommended that the following procedures are acknowledged in order to maintain EPA, State of Nevada OSHA and federal OSHA regulatory compliance, and reduce liability and health concerns:

- All materials which were identified to contain greater than 1% asbestos should be removed from the school building prior to any renovation projects commencing which would disturb these materials.
- A certified asbestos abatement consultant licensed in the State of Nevada should be contracted to develop abatement specifications based on this investigation and any other additional findings.
- A certified asbestos abatement contractor licensed in the State of Nevada should be contracted to perform all activities involving the removal or disturbance of materials which contain greater than one percent asbestos. All abatement work should be done in strict accordance with applicable Federal, State and local regulations.

- Notification to the EPA and State of Nevada OSHA, which regulate the removal of asbestos, should be performed by an asbestos abatement contractor (if required).
- A certified asbestos consultant licensed in the State of Nevada should be contracted to conduct perimeter air monitoring and project oversight during the removal of all ACM, and final clearance air sampling assessments after the asbestos abatement is complete.

Although the floor tile and exterior transite siding found to contain asbestos greater than 1% is non-friable and in fair condition, it will need to be dealt with as if it is RACM if there is a high probability that the material will become pulverized or reduced to a friable state by forces expected to act on the material in the course of renovation. Therefore, it is recommended that removal of all ACM occurs in the manner described above whenever feasible.

4.2 Lead Based Paint Assessment

Based on information obtained from conducting this lead based paint assessment, results indicated that multiple locations contained lead in paint at levels above 1 mg/cm². These locations are found both within the building and on the exterior of the building.

US EPA and OSHA regulations require the implementation of worker protection if there is a potential that paint containing lead will be disturbed during renovation activities. In accordance with these regulations, the following is recommended:

- A certified lead consultant should be contracted to develop a project specification based on this investigation and any other additional findings.
- A licensed Lead Abatement contractor licensed in the State of Nevada should be contracted to stabilize and or remove all regulated lead-painted materials.
- A certified lead consultant should be contracted to monitor the removal activities and to provide final clearance inspection reports.

Due to the poor condition of the lead based paint and its proximity to high traffic areas with children present, it is recommended that the hazards be reduced by abatement or stabilization of all deteriorated lead based paint in compliance with EPA's 40 CFR Part 745 (Title X).

5. LIMITATIONS

MGA is not responsible for any claims or damages associated with the interpretation of information provided during this inspection. This report should not be regarded as a guarantee that no further asbestos containing materials or lead-based paint exists beyond that which was suspected, visually inspected, and/or sampled during this non-destructive survey. In addition, asbestos and lead may not be distributed evenly throughout a particular material and MGA cannot guarantee that all materials sampled are exactly as represented throughout the entire facility. In the event renovation or demolition activities uncover materials that were previously hidden or inaccessible during the time of this survey, then additional sample collection and analysis may be required. In the event materials that were previously hidden or inaccessible during the time of this inspection are disturbed and an exposure occurs, MGA shall be held harmless and will not be responsible for any claims made, financial or otherwise.

The conclusions and recommendations presented above are based upon the agreed scope of work outlined in the above report. MGA makes no warranties or guarantees as to the accuracy or completeness of information obtained from others. It is possible that information exists beyond the scope of this investigation. Additional information, which is not available to MGA at the time of writing the Report, may result in a modification of the conclusions and recommendations presented. The services performed by MGA have been conducted in a manner consistent with the level of care ordinarily exercised by members of our profession currently practicing under similar

conditions. This report is not a legal opinion, but may, under certain circumstances, be prepared at the direction of counsel, may be in anticipation of litigation, and may be classified as an attorney-client communication or as an attorney work product.

This report has been prepared for the sole use of the addressee of this report, and cannot be released without consent from MGA. If a third party relies on the information provided in this report, MGA accepts no responsibility for damages suffered by the third party as a result of reliance of information contained in this report, and that nothing contained in this report shall create a contractual relationship or cause the third party to bring suit against MGA.

6. CLOSURE

We appreciate the opportunity to provide these services to you. Should you have any questions regarding the contents of this report, or need additional information, please contact us at your convenience.

Respectfully submitted,

McGinley and Associates, Inc.

Brett C. Bottenberg, C.E.M. #1690, Exp. 10/7/13

Senior Project Manager

Reviewed by:

I hereby certify that I am responsible for the services described in this document and for the preparation of this document. The services described in this document have been provided in a manner consistent with the current standards of the profession, and to the best of my knowledge, comply with all applicable federal, state and local statutes, regulations and ordinances

The use of the word "certify" in this document constitutes an expression of professional opinion regarding those facts or findings which are the subject of the certification and does not constitute a warranty or guarantee, either expressed or implied.

Brian Rakvica, P.E., C.E.M. #2260, Exp. Date 09/21/2014

Principal

7. REFERENCES

McGinley and Associates, Inc. Sampling and Analysis Plan, Asbestos and Lead Based Paint Assessment, Pahranagat Middle/High School Multi-Use Building, 262 Weeping Willow Avenue, Alamo, Lincoln County, Nevada. Project No. 804.11.001 – Task T2L:HZW, August 14, 2012.

APPENDIX A

Macrotec Renovation Investigation Report with Analytical Results

Renovation Investigation Report Asbestos and Lead Based Paint Survey

Project Information:

McGill Ballpark 56 S. 4th Street McGill, NV

Report Info:

Macrotec Project # 12085 October 4, 2012

Prepared For:

Brett Bottenberg McGinley & Associates 6280 S. Valley View Blvd., Suite 604 Las Vegas, NV 89118

Prepared By:

Jason McAllister - Macrotec Consulting, LLC.

Table of Contents:

Introduction
Scope of Services
Site Description
Inspection Methodology
Sample Analysis Methodology
Asbestos Sample Assessment
Lead Based Paint Assessment
Recommendations
Inspection Limitations

Appendix A Asbestos Assessment Appendix B XRF Analyzer Results

Appendix C Photo Log

Appendix D Sample Location Diagram

Appendix E Laboratory Reports

Appendix F Certifications

INTRODUCTION

Macrotec Consulting performed an inspection for Asbestos-Containing Building Materials and Lead Based Paint on September 18 and 19, 2012. The inspection was conducted for the project defined as: Renovation of the ballpark and surrounding structures at the address stated above.

The intent of this inspection was to identify materials containing asbestos and lead based paint, within the subject site, that may be impacted during planned renovation activities. Macrotec's inspection services were conducted at the request of Brett Bottenberg of McGinley & Associates.

Jason McAllister, a Nevada Asbestos Abatement Consultant, License No.IM0901, and a Nevada EPA Lead Inspector, certification #NV-I-125427-1, conducted these services for Macrotec Consulting at the subject site.

SCOPE OF SERVICES

Macrotec's inspection services were conducted utilizing the McGinley & Associates' Sampling Analysis Plan (SAP), which was prepared by Mr. Bottenberg. This SAP was developed to provide an outline for the proper collection and analysis of asbestos and lead based paint at the subject site.

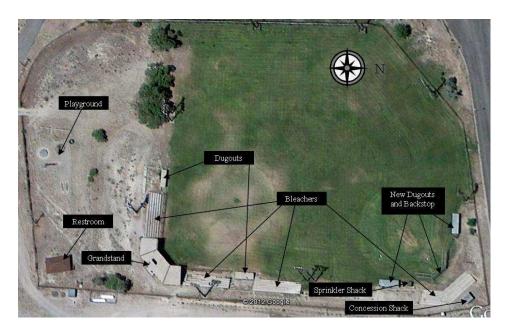
Asbestos

Macrotec's asbestos inspection services were conducted to identify the presence of any materials containing asbestos pursuant to the requirements of:

- Nevada OSHA NAC 618.960
- OSHA's "Criteria to rebut the designation of installed material as PACM (Presumed Asbestos Containing Material)", 1926.1101(k)(5).
- EPA's: 40 CFR Part 61 National Emission Standard for Hazardous Air Pollutants (NESHAP).

These regulations outline inspection and abatement requirements for materials containing asbestos.

Lead


Macrotec collected X-Ray Fluorescence (XRF) readings to identify the presence and content level of lead above the action level in compliance with the U.S. Department of Housing and Urban Development (HUD) and the Environmental Protection Agencies (EPA) regulatory requirements.

As per the SAP, Macrotec collected paint chip samples to confirm the readings found by the XRF analyzer. These paint chip samples were collected to identify the presence and content level of lead for compliance with the Occupational

Safety and Health Administration's (OSHA) and the Environmental Protection Agencies (EPA) regulatory requirements pertaining to worker protection and waste disposal.

SITE DESCRIPTION

The subject site included all of the buildings and structures on the subject property, within the perimeter fence.

Macrotec's inspection was limited to the location within the site planned for renovation as described above.

INSPECTION METHODOLOGY

An initial walk through of the subject site was conducted to identify homogeneous suspect materials containing asbestos and/or lead based paint, and their respective locations. This information was then used to develop a sample collection strategy.

Asbestos samples were collected by pre-wetting sample areas with water, then cutting or scraping the sample from the substrate with an appropriate sampling tool. Whenever possible, samples were collected from areas previously damaged or deteriorating. To avoid potential contamination due to unknown asbestos and/or lead based paint content; no building systems, components, or structures were demolished to obtain samples of potentially hidden materials containing asbestos.

Each suspect bulk sample was sealed in its own zip lock plastic container and labeled with a unique identification number. Sampling tools were individually

cleaned before and after each sample was collected to avoid sample cross contamination. Decontamination was accomplished using single use, premoistened cloths.

Samples were recorded on Macrotec's chain-of-custody form. This form accompanied the samples to Triangle Enivronmental Service Center, Inc. (TESC), located in Moseley, Virginia. The National Voluntary Laboratory Accreditation Program (NVLAP) accredits TESC for analysis of bulk building material samples for asbestos.

Lead testing was conducted in accordance with chapter seven of the <u>Guidelines</u> of the <u>Evaluation and Control of Lead Based Paint Hazards in Housing</u> published by HUD. Interior XRF readings were taken on the painted surfaces which will be impacted during renovation activities. The HUD definition of lead based paint is lead equal to or greater than 1.0 mg/cm². All results above this level are considered positive and all results found below this level are considered negative.

The confirmatory paint chip samples were recorded on Macrotec's chain of custody form and submitted to TESC and analyzed by Schneider Laboratories. The American Industrial Hygiene Association (AIHA) accredits Schneider Laboratories Inc. in Richmond Virginia, for analysis of paint chip samples for lead.

SAMPLE ANALYSIS METHODOLOGY

Asbestos

Suspect asbestos samples were subjected to analysis by polarized light microscopy (PLM). Bulk sample analysis was conducted in accordance with the EPA's "Test Method for the Determination of Asbestos in Bulk Building Materials, EPA/600/R-93/116, 1993.

Lead

Painted surfaces were tested using an X-Ray Fluorescence (XRF) analyzer. The XRF was a Niton XLp300A paint analyzer serial #26948. The instrument was calibrated to the manufactures specifications before and after the inspection, verified against the National Institute of Standards and Testing (NIST) Standard Reference Material (SRM) P/N 500-934. The analyzer was in control at all times of the NIST SRM lead standard.

To determine lead content, the confirmatory paint chip samples were submitted for analysis in accordance with the EPA's Method SW846-7420.

ASBESTOS SAMPLE ASSESSMENT

Macrotec's inspection of the subject site found Nine (9) separate suspect asbestos building materials, of which a total of Eleven (11) samples were collected and submitted for analysis.

The following table summarizes the materials that were found to be asbestos containing, the locations where the material is located, the material's friability and its NESHAP classification.

Material	Material	Material	Material	NESHAP
Number	Description	Locations	Friability	
3	Corrugated	This material is located on the walls and roof	Non-	Category
	Cementacious Exterior	of the grandstand and dugouts, and the	Friable	H^1
	Siding / Roofing	backside of the outfield bleachers.		
		~2,800sq.ft.		

See Appendix A for a listing of the materials, material locations, samples, sample locations and results for this project.

LEAD BASED PAINT ASSESSMENT

XRF Analyer Results

Macrotec collected One Hundred Six (106) XRF paint readings within the subject site.

The following table lists all materials above the HUD action level of 1.0 mg/cm².

Material Description	Material Locations	Condition	Result mg/cm ²
Green Metal Columns, Beams, Supports, Frames and Fence Posts	All of the green painted metal in the grandstand, backstop, dugouts, bleachers, and field.	Poor	Up to 11.7
Green Wood Walls	Located on the perimeter of the booth inside the grandstand.	Poor	1.2-2.5
Green Metal Doors, Doorframes, Window Sashes, and Privacy Walls	Located on the exterior of the restroom building.	Poor	2.1-4.2
Green Wood Soffits and Joists	Located around the perimeter of the exterior of the restroom building beneath the roof line.	Poor	1.8-4.1
Green and Yellow Concrete Window Sills	Located on the exterior side of the windows on the restroom building.	Poor	5.6-7.35

See Appendix B for a listing of the painted surfaces, XRF readings, and XRF reading locations and results for this project.

¹ Category II non-friable asbestos-containing material means any material, excluding Category I, containing more than 1 percent asbestos.

Bulk Paint Chip Results

Macrotec collected **Five (5)** confirmatory bulk paint chip samples of six of the painted surfaces that were tested with the XRF analyzer.

The following table summarizes the painted surfaces that were bulk tested, the sample location, and the laboratory result.

Painted Surface Description	Sample Collection Location	Lab Result (Parts / Million)
Beige Wood Siding	Sprinkler Shack – N wall	Below Reportable Limit
Green Metal Beam	Grandstand – Interior wall	94,959
Green Doorframe	Restroom – W doorway	242,675
Yellow Concrete Window Sill	Restroom – E wall	196,974
Blue Wood Door	Concession Shack – E wall	34

The results of the bulk paint chip sampling confirms the results found by the XRF analyzer. See Appendix E.1 for a copy of the laboratory report.

RECOMMENDATIONS

Asbestos

US EPA and Nevada Department of Industrial Relations regulations <u>require the</u> <u>removal of all regulated asbestos-containing materials (RACM) prior to any renovation or demolition that could impact or disturb RACM</u>. In accordance with these regulations Macrotec recommends:

Hiring a Certified Asbestos Consultant to develop a project specification based on this investigation and any other additional findings.

Hiring a Nevada licensed Asbestos Abatement Contractor to remove all asbestos materials, which are either regulated or may become regulated during the course of renovation and/or demolition activities.

Hiring a Certified Asbestos Consultant to monitor the removal activities and to provide final clearance inspection reports.

Although the corrugated transite siding/roofing found to contain asbestos in this investigation is non-friable in fair condition, they need to be dealt with as RACM if they have a high probability of becoming pulverized or reduced to powder by the

forces expected to act on the material in the course of renovation. Macrotec recommends the removal of all ACM (in the manner described above) whenever feasible.

Lead

US EPA and OSHA regulations require the implementation of worker protection if there is a potential that paint with lead in it will be disturbed during renovation activities. In accordance with these regulations Macrotec recommends:

Hiring a Certified Lead Consultant to develop a project specification based on this investigation and any other additional findings.

Hiring a Nevada licensed Lead Abatement Contractor to stabilize and or remove all regulated lead painted materials.

Hiring a Certified Lead Consultant to monitor the removal activities and to provide final clearance inspection reports.

Due to the poor condition of the lead based paint and its proximity to high traffic areas with children present, Macrotec recommends the reduction of potential hazards by abating or stabilizing all deteriorated lead based paint, in compliance with EPA's 40 CFR Part 745 (Title X).

INSPECTION LIMITATIONS

The information contained in this report is limited to those areas and suspect materials found to be visually accessible through reasonable means.

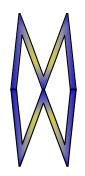
Macrotec conducted a non-destructive survey. No demolition of building materials was conducted to determine the presence of asbestos or lead paint in wall cavities, chases or other inaccessible areas. Macrotec cannot warrant that these areas do not contain asbestos or lead in locations other than those noted in this report, however, a good faith effort was made to conduct a comprehensive survey.

- Macrotec accepts no liability for additional materials or under reporting of asbestos materials that exist below other floor coverings.
- This report is not represented as, nor is it intended to be, an asbestos or lead based paint abatement scope of work or project specification.
- If suspect materials are discovered during future demolition operations, cease all general work activities which could impact the

discovered suspect materials, until confirmation sampling can be conducted.

Thank you for allowing Macrotec Consulting to assist you with your environmental consulting needs. Please contact me with any questions regarding this report at (702) 338-8213.

Jason R. McAllister


Nevada-OSHA Certified Asbestos Abatement Consultant

Certificate #IM0901

US-EPA Certified Lead Inspector

Certification #NV-I-125427-1

Appendix A

Macrotec Consulting, LLC.

Appendix A - Asbestos Assessment Macrotec Job #12085 - McGill Ballpark

The following table lists each of the materials suspected to contain asbestos at the subject site. For each material the sample number, location and laboratory result are listed. If the material was found to contain asbestos, the friablity and NESHAP classification is identified.

1	Green Asphalt F		No Asbestos Detected
	This material is loc	cated on the sprinkler shack down the first base line	•
	AB1	Sprinkler Shack - Roof	None Detected
2	Black Tar Paper		No Asbestos Detected
		cated on the sprinkler shack down the first base line	
	AB2	Sprinkler Shack - Roof	None Detected
3	This material is loc	nentacious Siding/Roofing cated on the walls and roofs of the grandstand and otted in the outfield (down the first base line).	Non-Friable, Category I dugouts, and on the back side of
	AB3	3rd Base Dugout - Roof	20% Chrysotile
	AB4	1st Base Dugout - Wall	20% Chrysotile
	AB5	Grandstand - E Wall	20% Chrysotile
7	Sheet Rock Wal	I (NO MIIA)	
		cated in the grandstand booth. Grandstand - Booth - W wall	No Asbestos Detected None Detected
<u> </u>	This material is loc AB6 Electric Line Wr	Grandstand booth. Grandstand - Booth - W wall	None Detected
5	This material is loc AB6 Electric Line Wr	Grandstand booth. Grandstand - Booth - W wall	None Detected
	AB6 Electric Line Wr This material is loc AB7 Green 9x9 Floor	Grandstand booth. Grandstand - Booth - W wall Grandstand booth. Grandstand booth. Grandstand - Booth - W wall	No Asbestos Detected
	AB6 Electric Line Wr This material is loc AB7 Green 9x9 Floor	Grandstand - Booth - W wall Tap Cated in the grandstand booth. Grandstand - Booth - W wall Grandstand - Booth - W wall	None Detected No Asbestos Detected None Detected
6	AB6 Electric Line Wr This material is loc AB7 Green 9x9 Floor This material is loc AB8 Black Floor Mas	Grandstand - Booth - W wall Tap Cated in the grandstand booth. Grandstand - Booth - W wall Tile Cated in the restroom building. Restroom - SW corner	None Detected No Asbestos Detected None Detected No Asbestos Detected

56 S. 4th Street, McGill, NV

Asbestos Survey

Appendix A

Macrotec Job #12085 - McGill Ballpark

8 Fiberboard Ceiling

No Asbestos Detected

This material is located in the restroom building.

AB10 Restroom - Center None Detected

9 Gray Asphalt Roof Shingle

No Asbestos Detected

This material is located on the concession shack behind the outfield bleachers.

AB11	Concession Shack	None Detected

Asbestos Survey _____ Macrotec Job #12085

Appendix B

Time	Duration	Component	Substrate	Color	Building / Structure	Results	Depth	PbC	PbC Error	PbL	PbL Error	PbK	PbK Error
9/18/12 18:34	56.39	Instrument Calibration	n					5.51	0	1.01	0	0.02	0
9/18/12 18:35	7.7	Calibration				Positive	1.07	1.1	0.1	1.1	0.1	< LOD	0.9
9/18/12 18:35	8.68	Calibration				Positive	1.07	1.1	0.1	1.1	0.1	< LOD	0.84
9/18/12 18:36	19.81	Calibration				Positive	1.07	1	0.1	1	0.1	< LOD	0.51
9/18/12 18:38	0.48	Column	Metal	Green	Grandstand	Positive	1.91	< LOD	3.6	< LOD	3.6	< LOD	16.35
9/18/12 18:38	0.48	Column	Metal	Green	Grandstand	Positive	2.17	< LOD	11.7	< LOD	11.7	< LOD	20.4
9/18/12 18:39	0.48	Column	Metal	Green	Grandstand	Positive	2.54	< LOD	7.5	< LOD	7.5	< LOD	18
9/18/12 18:40	0.97	Beam	Metal	Green	Grandstand	Positive	2.98	4.9	2.8	4.9	2.8	< LOD	12.9
9/18/12 18:40	0.49	Beam	Metal	Green	Grandstand	Positive	1.52	3.2	2	3.2	2	< LOD	15.45
9/18/12 18:40	1.93	Support	Metal	Green	Grandstand	Positive	1.08	1.4	0.4	1.4	0.4	< LOD	4.2
9/18/12 18:41	0.49	Support	Metal	Green	Grandstand	Positive	1.53	5.8	3.5	5.8	3.5	< LOD	20.25
9/18/12 18:41	1.45	Bench	Wood	Green	Grandstand	Negative	1.9	0.6	0.3	0.6	0.3	< LOD	3
9/18/12 18:41	1.45	Bench	Wood	Green	Grandstand	Negative	1.29	0.5	0.2	0.5	0.2	< LOD	2.85
9/18/12 18:42	1.93	Bench	Wood	Green	Grandstand	Negative	1.65	0.7	0.3	0.7	0.3	< LOD	2.55
9/18/12 18:42	1.45	Bench	Wood	Green	Grandstand	Negative	1.85	0.6	0.3	0.6	0.3	< LOD	3.15
9/18/12 18:43	3.39	Bench	Wood	Green	Grandstand	Negative	2.45	0.7	0.3	0.7	0.3	< LOD	1.2
9/18/12 18:43	1.45	Bench	Wood	Green	Grandstand	Negative	2.5	< LOD	0.42	< LOD	0.42	< LOD	2.85
9/18/12 18:43	1.92	Bench Support	Metal	Green	Grandstand	Negative	1.71	0.7	0.3	0.7	0.3	< LOD	4.05
9/18/12 18:43	3.37	Bench Support	Metal	Green	Grandstand	Positive	2.26	2.6	1.6	1.2	0.4	2.6	1.6
9/18/12 18:44	1.45	Bench Support	Metal	Green	Grandstand	Negative	1.39	0.6	0.3	0.6	0.3	< LOD	4.38
9/18/12 18:44	2.9	Wall	Transite	Green	Grandstand	Negative	1.05	0.28	0.11	0.28	0.11	< LOD	2.89
9/18/12 18:45	5.81	Wall	Transite	Green	Grandstand	Negative	1.03	0.5	0.1	0.5	0.1	< LOD	1.35
9/18/12 18:45	3.86	Wall	Wood	Green	Grandstand	Positive	1.48	1.2	0.2	1.2	0.2	1.2	0.7
9/18/12 18:45	0.97	Wall	Wood	Green	Grandstand	Positive	1.72	2.5	1.3	2.5	1.3	< LOD	6.6
9/18/12 18:45	1.44	Wall	Wood	Green	Grandstand	Negative	1.19	0.4	0.2	0.4	0.2	< LOD	3
9/18/12 18:45	1.45	Wall	Wood	Green	Grandstand	Negative	1	0.3	0.17	0.3	0.17	< LOD	3.37
9/18/12 18:46	0.97	Wall	Wood	Green	Grandstand	Positive	1.46	2	1	2	1	< LOD	6.3
9/18/12 18:47	0.49	Frame	Metal	Green	Backstop	Positive	1.37	4	2.3	4	2.3	< LOD	18.15
9/18/12 18:48	0.96	Column	Metal	Green	Dugout 3rd Base	Positive	1.49	2.3	1.1	2.3	1.1	< LOD	9.15
9/18/12 18:49	0.96	Beam	Metal	Green	Dugout 3rd Base	Positive	1.88	2.3	1.3	2.3	1.3	< LOD	10.05
9/18/12 18:49	3.36	Wall	Concrete	Green	Dugout 3rd Base	Negative	2.44	< LOD	0.03	< LOD	0.03	< LOD	1.89
9/18/12 18:50	3.38	Wall	Concrete	Green	Dugout 3rd Base	Negative	1.29	0.05	0.03	0.05	0.03	< LOD	1.73
9/18/12 18:50	2.9	Wall	Transite	Green	Dugout 3rd Base	Negative	2.06	< LOD	0.16	< LOD	0.16	< LOD	2.77
9/18/12 18:50	2.89	Wall	Transite	Green	Dugout 3rd Base	Negative	1.67	< LOD	0.03	< LOD	0.03	< LOD	2.8
9/18/12 18:51	4.36	Soil		•	Dugout 3rd Base	Negative	2.48	< LOD	0.03	< LOD	0.03	< LOD	1.8
9/18/12 18:51	0.49	Fence Post	Metal	Green	Field 3rd Base	Positive	1.61	< LOD	3.6	< LOD	3.6	< LOD	15.45
9/18/12 18:53	1.45	Fence Post	Metal	Silver	Field Outfield	Negative	1.32	< LOD	0.07	< LOD	0.07	< LOD	4.51
9/18/12 18:53	1.45	Fence Post	Metal	Silver	Field Outfield	Negative	1	< LOD	0.04	< LOD	0.04	< LOD	4.38
9/18/12 18:57	0.97	Column	Metal	Green	Dugout 1st Base	Positive	1.62	2.9	1.4	2.9	1.4	< LOD	10.65
9/18/12 18:58	2.41	Column	Metal	Green	Dugout 1st Base	Positive	1.27	1.4	0.3	1.4	0.3	< LOD	3.9
9/18/12 18:58	1.44	Roof	Transite	Green	Dugout 1st Base	Negative	1	< LOD	0.03	< LOD	0.03	< LOD	3.98
9/18/12 19:01	1.44	Frame	Metal	Green	Bleacher 1st Base	Negative	1.35	0.5	0.3	0.5	0.3	< LOD	4.77
9/18/12 19:01	1.44	Frame	Metal	Green	Bleacher 1st Base	Negative	1.15	0.4	0.2	0.4	0.2	< LOD	4.8
9/18/12 19:01	1.44	Frame	Metal	Green	Bleacher 1st Base	Negative	1.05	0.4	0.2	0.4	0.2	< LOD	4.27

Appendix B Page 1

Time	Duration	Component	Substrate	Color	Building / Structure	Results	Depth	PbC	PbC Error	PbL	PbL Error	PbK	PbK Error
9/18/12 19:01	1.44	Frame	Metal	Green	Bleacher 1st Base	Negative	1.25	0.5	0.2	0.5	0.2	< LOD	5.1
9/18/12 19:01	1.46	Frame	Metal	Green	Bleacher 1st Base	Negative	1.26	0.5	0.2	0.5	0.2	< LOD	4.87
9/18/12 19:03	1.45	Fence	Metal	Brown	New Dugout (Outfield)	Negative	1	< LOD	0.04	< LOD	0.04	< LOD	4.66
9/18/12 19:03	1.44	Bench	Wood	White	New Dugout (Outfield)	Negative	1	< LOD	0.03	< LOD	0.03	< LOD	2.73
9/18/12 19:04	1.46	Bench	Metal	White	New Dugout (Outfield)	Negative	1.05	0.29	0.16	0.29	0.16	< LOD	4.8
9/18/12 19:04	1.44	Bench	Metal	White	New Dugout (Outfield)	Negative	1.26	0.4	0.2	0.4	0.2	< LOD	4.61
9/18/12 19:04	1.46	Bench	Metal	White	New Dugout (Outfield)	Negative	1.34	0.4	0.2	0.4	0.2	< LOD	4.5
9/18/12 19:05	1.45	Wall	Wood	Beige	New Dugout (Outfield)	Negative	1.03	< LOD	0.03	< LOD	0.03	< LOD	2.57
9/18/12 19:06	1.45	Wall	Wood	Beige	Sprinkler Shack	Negative	1	< LOD	0.03	< LOD	0.03	< LOD	2.49
9/18/12 19:09	1.45	Fascia	Wood	Beige	Sprinkler Shack	Negative	1.58	< LOD	0.05	< LOD	0.05	< LOD	2.09
9/18/12 19:10	3.86	Frame	Metal	Green	Bleacher Outfield	Negative	2.48	0.8	0.2	0.8	0.2	< LOD	1.95
9/18/12 19:11	1.43	Frame	Metal	Green	Bleacher Outfield	Negative	1.59	0.4	0.2	0.4	0.2	< LOD	4.95
9/18/12 19:11	1.45	Frame	Metal	Green	Bleacher Outfield	Negative	1.81	0.5	0.3	0.5	0.3	< LOD	4.95
9/18/12 19:11	5.34	Frame	Metal	Green	Bleacher Outfield	Positive	2.24	1.2	0.2	1.2	0.2	< LOD	1.65
9/18/12 19:12	1.46	Bench	Wood	Green	Bleacher Outfield	Negative	1.9	< LOD	0.31	< LOD	0.31	< LOD	2.69
9/18/12 19:17	8.22	Calibration				Positive	1.09	1.1	0.1	1.1	0.1	< LOD	0.93
9/18/12 19:17	7.26	Calibration				Positive	1.14	1.2	0.1	1.2	0.1	< LOD	0.98
9/18/12 19:18	8.24	Calibration				Positive	1.07	1.1	0.1	1.1	0.1	< LOD	0.88
9/19/12 8:43	54.43	Instrument Calibration	1					4.9	0	0.9	0	0	0
9/19/12 8:47	3.86	Calibration				Positive	1.16	1.2	0.2	1.2	0.2	< LOD	1.36
9/19/12 8:47	3.87	Calibration				Positive	1.14	1.2	0.2	1.2	0.2	< LOD	1.31
9/19/12 8:47	7.72	Calibration				Positive	1.07	1.1	0.1	1.1	0.1	< LOD	0.9
9/19/12 8:49	2.9	Wall	Transite	Beige	Grandstand	Negative	1.28	< LOD	0.08	< LOD	0.08	< LOD	2.85
9/19/12 8:49	2.42	Wall	Drywall	Green	Grandstand	Negative	3.23	< LOD	0.26	< LOD	0.26	< LOD	2.25
9/19/12 8:50	1.44	Elec Panel	Metal	Black	Grandstand	Negative	7.93	< LOD	0.63	< LOD	0.63	< LOD	4.31
9/19/12 8:50	1.46	Elec Panel	Metal	Black	Grandstand	Negative	1	< LOD	0.03	< LOD	0.03	< LOD	4.51
9/19/12 8:59	3.37	Wall	Brick	White	Restroom (Interior)	Negative	1	< LOD	0.03	< LOD	0.03	< LOD	1.78
9/19/12 8:59	5.31	Wall	Brick	White	Restroom (Interior)	Negative	2.03	0.09	0.04	0.09	0.04	< LOD	1.35
9/19/12 9:00	3.36	Wall	Brick	White	Restroom (Interior)	Negative	1.25	< LOD	0.07	< LOD	0.07	< LOD	1.79
9/19/12 9:00	4.81	Wall	Brick	White	Restroom (Interior)	Negative	1.49	0.05	0.03	0.05	0.03	< LOD	1.5
9/19/12 9:00	1.45	Door	Metal	White	Restroom (Interior)	Negative	2.19	< LOD	0.16	< LOD	0.16	< LOD	4.04
9/19/12 9:01	1.45	Doorframe	Metal	White	Restroom (Interior)	Negative	2.02	< LOD	0.15	< LOD	0.15	< LOD	4.65
9/19/12 9:01	0.49	Doorframe	Metal	Green	Restroom (Exterior)	Positive	1.99	< LOD	4.2	< LOD	4.2	< LOD	15.15
9/19/12 9:02	0.96	Door	Metal	Green	Restroom (Exterior)	Positive	1.31	2.5	1.1	2.5	1.1	< LOD	9.3
9/19/12 9:02	0.98	Privacy Wall	Metal	Green	Restroom (Exterior)	Positive	1.45	3.6	1.7	3.6	1.7	< LOD	10.5
9/19/12 9:03	1.46	Soffit	Wood	Green	Restroom (Exterior)	Positive	1.14	1.8	0.5	1.8	0.5	< LOD	3.45
9/19/12 9:03	0.48	Joist	Wood	Green	Restroom (Exterior)	Positive	1.61	4.1	2.6	4.1	2.6	< LOD	12.45
9/19/12 9:04	0.49	Window Sill	Concrete	Green	Restroom (Exterior)	Positive	1.68	5.6	3.6	5.6	3.6	< LOD	21.3
9/19/12 9:12	1.44	Ceiling	Wallboard	White	Restroom (Interior)	Negative	1.66	< LOD	0.15	< LOD	0.15	< LOD	1.95
9/19/12 9:13	0.49	Window Sill	Concrete	Yellow	Restroom (Exterior)	Positive	1.82	< LOD	7.35	< LOD	7.35	< LOD	29.25
9/19/12 9:15	1.44	Window Sash	Metal	Green	Restroom (Interior)	Positive	1.35	2.1	0.6	2.1	0.6	< LOD	5.1
9/19/12 9:16	1.44	Horse	Plastic	Red	Playground	Negative	1	< LOD	0.03	< LOD	0.03	< LOD	2.11
9/19/12 9:17	1.45	Horse	Metal	Red	Playground	Negative	1	< LOD	0.03	< LOD	0.03	< LOD	4.45
9/19/12 9:17	1.46	Horse	Metal	Blue	Playground	Negative	1.46	< LOD	0.14	< LOD	0.14	< LOD	4.04

Appendix B Page 2

Time	Duration	Component	Substrate	Color	Building / Structure	Results	Depth	PbC	PbC Error	PbL	PbL Error	PbK	PbK Error
9/19/12 9:17	1.45	Horse	Metal	Yellow	Playground	Negative	1	< LOD	0.03	< LOD	0.03	< LOD	4.26
9/19/12 9:18	1.46	Horse	Metal	Yellow	Playground	Negative	1.25	< LOD	0.23	< LOD	0.23	< LOD	2.3
9/19/12 9:18	1.47	Horse	Metal	Yellow	Playground	Negative	1.3	< LOD	0.19	< LOD	0.19	< LOD	4.08
9/19/12 9:19	1.45	Horse	Metal	Green	Playground	Negative	1	< LOD	0.21	< LOD	0.21	< LOD	4.06
9/19/12 9:19	1.46	Horse	Metal	Green	Playground	Negative	1.63	< LOD	0.42	< LOD	0.42	< LOD	4.11
9/19/12 9:19	1.44	Horse	Metal	Green	Playground	Negative	1.02	< LOD	0.07	< LOD	0.07	< LOD	1.65
9/19/12 9:20	1.45	Slide	Fiberglass	Red	Playground	Negative	1	< LOD	0.08	< LOD	0.08	< LOD	3.08
9/19/12 9:20	1.46	Slide	Metal	Yellow	Playground	Negative	4.4	< LOD	0.26	< LOD	0.26	< LOD	3.99
9/19/12 9:21	1.44	Merry-Go-Round	Metal	Blue	Playground	Negative	1	< LOD	0.03	< LOD	0.03	< LOD	4.05
9/19/12 9:21	1.46	Merry-Go-Round	Metal	Yellow	Playground	Negative	1.05	< LOD	0.05	< LOD	0.05	< LOD	3.82
9/19/12 9:21	1.45	Merry-Go-Round	Metal	Green	Playground	Negative	3.59	< LOD	0.28	< LOD	0.28	< LOD	4.1
9/19/12 9:22	1.46	Monkey Dome	Metal	Black	Playground	Negative	1	< LOD	0.04	< LOD	0.04	< LOD	4.08
9/19/12 9:23	1.45	Monkey Dome	Metal	Blue	Playground	Negative	1	< LOD	0.04	< LOD	0.04	< LOD	4.01
9/19/12 9:23	1.46	Monkey Dome	Metal	Yellow	Playground	Negative	1	< LOD	0.03	< LOD	0.03	< LOD	4.36
9/19/12 9:23	1.46	Monkey Dome	Metal	Green	Playground	Negative	1	< LOD	0.05	< LOD	0.05	< LOD	4.19
9/19/12 9:24	1.92	Swing	Metal	Green	Playground	Negative	2.69	< LOD	0.43	< LOD	0.43	< LOD	3.7
9/19/12 9:24	1.46	Swing	Metal	Green	Playground	Negative	1.41	< LOD	0.26	< LOD	0.26	< LOD	4.25
9/19/12 9:24	1.44	Swing	Metal	Green	Playground	Negative	2.46	< LOD	0.23	< LOD	0.23	< LOD	4.48
9/19/12 9:31	1.45	Wall	Wood	Blue	Concession Shack	Negative	1	< LOD	0.03	< LOD	0.03	< LOD	2.06
9/19/12 9:31	1.45	Wall	Wood	Blue	Concession Shack	Negative	1	< LOD	0.03	< LOD	0.03	< LOD	1.96
9/19/12 9:31	1.45	Wall	Wood	Blue	Concession Shack	Negative	1	< LOD	0.03	< LOD	0.03	< LOD	2.1
9/19/12 9:31	1.45	Wall	Wood	Blue	Concession Shack	Negative	1	< LOD	0.03	< LOD	0.03	< LOD	2.04
9/19/12 9:32	1.44	Soffit	Wood	White	Concession Shack	Negative	1.42	< LOD	0.05	< LOD	0.05	< LOD	2.55
9/19/12 9:32	1.44	Door	Wood	Blue	Concession Shack	Negative	1	< LOD	0.03	< LOD	0.03	< LOD	2.4
9/19/12 9:39	1.45	Post	Metal	Silver	New Backstop (Outfield)	Negative	1	< LOD	0.04	< LOD	0.04	< LOD	4.5
9/19/12 9:39	1.45	Post	Metal	Silver	New Backstop (Outfield)	Negative	1	< LOD	0.04	< LOD	0.04	< LOD	4.19
9/19/12 9:39	1.44	Post	Metal	Silver	New Backstop (Outfield)	Negative	1	< LOD	0.03	< LOD	0.03	< LOD	4.18
9/19/12 9:41	1.47	Fence	Metal	Silver	Perimeter	Negative	2.19	< LOD	0.52	< LOD	0.52	< LOD	4.5
9/19/12 9:42	1.45	Carstop	Metal	Silver	Perimeter	Negative	1	< LOD	0.06	< LOD	0.06	< LOD	4.2
9/19/12 9:47	8.21	Calibration				Positive	1.07	1.1	0.1	1.1	0.1	< LOD	0.9
9/19/12 9:47	13.55	Calibration				Positive	1.07	1.1	0.1	1.1	0.1	< LOD	0.6
9/19/12 9:47	13.04	Calibration				Positive	1.06	1.1	0.1	1.1	0.1	0.8	0.4

Appendix B Page 3

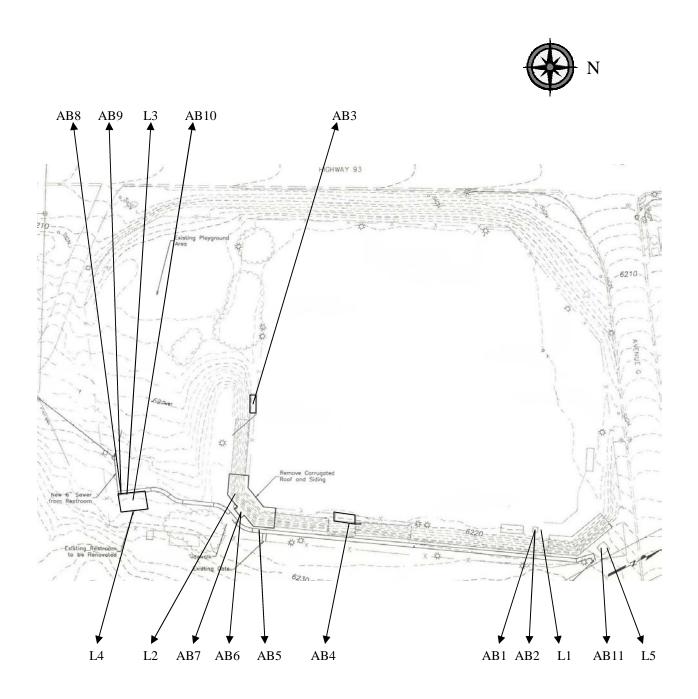
Appendix C

Picture 1 - Green Metal Beam Inside Grandstand.

Picture 2 - Exterior Corrugated Transite Walls and Roof on the Grandstand.

Picture 3 - Corrugated Transite Siding Behind the Outfield Bleachers. (From Above)

Picture 4 - Corrugated Transite Siding Behind the Outfield Bleachers. (From Below)


Picture 5 - Exterior Door, Doorframe, Fascia and Joists on the Restroom Building.

Picture 6 - Exterior Window Frame, Joists and Privacy Wall on the Restroom Building.

Appendix D

Sample Location Diagram

* Diagram Not Drawn To Scale

Appendix E

TRIANGLE ENVIRONMENTAL SERVICE CENTER, INC.

13509 East Boundary Road, Suite B, Midlothian, VA 23112 804-739-1751 • fax: 804-739-1753

BULK ASBESTOS SAMPLE ANALYSIS SUMMARY

CLIENT: Macrotec Consulting TESC LOGIN #: 120924N1

9724 Mild Weather Ct.

Las Vegas, NV 89148 DATE OF RECEIPT: 9/24/2012

DATE OF ANALYSIS: 9/24/2012 DATE OF REPORT: 9/24/2012

CLIENT JOB/#: 12085

JOB SITE: Hwy 93, Mcgill, NV ANALYST: F. Jiang

TESC SAMPLE #	CLIENT SAMPLE ID & GROSS DESCRIPTION	ESTIMATED % ASBESTOS	NON ASBESTOS % FIBERS	NON FIBROUS % MATERIALS
1	AB01 / Black tar-like	NAD	20% Cellulose	80%
2	AB02 / Black fibers	NAD	NAD 95% Cellulose	
3	AB03 / Gray cement	20% Chrysotile		80%
4	AB04 / Gray cement	20% Chrysotile		80%
5	AB05 / Gray cement	20% Chrysotile		80%
6	AB06 / White powder, brown fibers	NAD	20% Cellulose	80%
7	AB07 / White fibers	NAD	98% Cellulose	2%
8	AB08 / Green vinyl	NAD		100%
9	AB09 / Dark brown adhesive	NAD		100%
10	AB10 / Black fibers	NAD	98% Cellulose	2%
11	AB11 / Black tar-like	NAD	20% Fiberglass	80%

Samples are analyzed in accordance with "Interim Method for the Determination of Asbestos in Bulk Insulation Samples", EPA/600/R-93-116, July 1993 (EPA-600/M4-82-020, Dec 1982), or the current US EPA method for the analysis of asbestos in building material. None Detected: not detected at/or below the detected limit of method (Reporting limit: 1% Asbestos). Glass fiber is analyzed for quality control blank. TESC recommends by point count or Transmission Electron Microscopy (TEM), for materials regulated by the EPA NESHAP (National Emission Standards for Hazardous Air Pollutants) and found to contain less than ten percent (<10%) asbestos by Polarized Light Microscopy (PLM). Both services are available for an additional fee. This report must not be reproduced except in full with approval of Triangle Environmental Service Center, Inc. This test report relates only to the item(s) tested.

NVLAP Lab Code: 200794-0 [LEGEND NAD=No Asbestos Detected, Lino.=Linoleum, JC=Joint Compound]

Reviewed By Authorized Signatory:

Feng Jiang, MS Senior Geologist, Laboratory Director Yuedong Fang, Senior Geologist

Monday, September 24, 2012 Page 1 of 2

TRIANGLE ENVIRONMENTAL SERVICE CENTER, INC.

13509 East Boundary Road, Suite B, Midlothian, VA 23112 804-739-1751 • fax: 804-739-1753

BULK ASBESTOS SAMPLE ANALYSIS SUMMARY

CLIENT: Macrotec Consulting TESC LOGIN #: 120924N1

9724 Mild Weather Ct.

Las Vegas, NV 89148 DATE OF RECEIPT: 9/24/2012

DATE OF ANALYSIS: 9/24/2012 DATE OF REPORT: 9/24/2012

CLIENT JOB/#: 12085

JOB SITE: Hwy 93, Mcgill, NV ANALYST: F. Jiang

TESC	CLIENT SAMPLE ID	ESTIMATED	NON ASBESTOS	NON FIBROUS
SAMPLE #	& GROSS DESCRIPTION	% ASBESTOS	% FIBERS	% MATERIALS

Total Samples/Layers Analyzed: 11

Samples are analyzed in accordance with "Interim Method for the Determination of Asbestos in Bulk Insulation Samples", EPA/600/R-93-116, July 1993 (EPA-600/M4-82-020, Dec 1982), or the current US EPA method for the analysis of asbestos in building material. None Detected: not detected at/or below the detected limit of method (Reporting limit: 1% Asbestos). Glass fiber is analyzed for quality control blank. TESC recommends by point count or Transmission Electron Microscopy (TEM), for materials regulated by the EPA NESHAP (National Emission Standards for Hazardous Air Pollutants) and found to contain less than ten percent (<10%) asbestos by Polarized Light Microscopy (PLM). Both services are available for an additional fee. This report must not be reproduced except in full with approval of Triangle Environmental Service Center, Inc. This test report relates only to the item(s) tested.

NVLAP Lab Code: 200794-0 [LEGEND NAD=No Asbestos Detected, Lino.=Linoleum, JC=Joint Compound]

Reviewed By Authorized Signatory:

Feng Jiang, MS Senior Geologist, Laboratory Director Yuedong Fang, Senior Geologist

Monday, September 24, 2012 Page 2 of 2

Macrotec Macrotec Consulting, LLC

Phone: (702) 338-8213 Fax: (702) 629-5677 Office@MacrotecConsulting.com

Bulk Sampling Chain of Custody Form

Client	Name _	MEGINERY + ASSOC.	Project Number 2085
Project Location Hwy 93 McGru, NV		M'Gru boupone	Collection Date 9/18/12 9/19/12
Projec	t Location	Hwy 93, McGill, NV	Number LYBECOOY
Techn	ician	JRM	Turn Around Time
Labora	atory	TESC	Method of Analysis PM
Stop a	t 1st Posi	itive?: Y / N Composite Sheet Rock?: Y / N	Matrix <u>Buk</u>
	ple # Count	Sample Description (Material Type : Description : Color)	Sample Location (General : Room : Specific)
1	AB1	GREEN ASPUANT for LOVEME	SPRINKLE SHAK - LODF
2	A62	BIXX TAR PAPER	* - "
3	A03	CHEVERTED CEMENTACIONS SIONE ROSENE	BRO BASE DURBUT - LOOF
3	A54	7/	Ist Para Dear - Whie
3	ABS	il.	bemosmo - E wer
4	ABL	Sirect Rax Vace (No More)	" - BOOTH - W WALL
5	A67	ELECTRIC LINE WEAP	H _ R _ R
4	A18	GREEN 9X9 FLOOR TILE	RESTROOM - SW GENER
7	A19	BLACK FLOOR MASTIC	4 — И
8	ADIO	FIBERBOARD CEMPLE	" - CENTER
9	ABII	GRAY BRUGET FOOT SHINGER	Concession Strok - Poot
		£.	
		* - * *	
		. #	
		X.	
		,	
	1		
Relinq	uished By	Date: 9/19/12 Receive	d By: Date: 24/1
Relinq	uished By	Z: Date: Receive	d By: Date:

Appendix E.1

TRIANGLE ENVIRONMENTAL SERVICE CENTER, INC.

13509 East Boundary Road, Suite B, Midlothian, VA 23112 • 804-739-1751 • fax: 804-739-1753

LEAD IN PAINT SAMPLE ANALYSIS SUMMARY

(EPA METHOD 7420)

CLIENT: Macrotec Consulting

9724 Mild Weather Ct.

Las Vegas, NV 89148

TESC LOGIN #: 120924G

DATE OF RECEIPT: 9/24/2012

DATE OF ANALYSIS: 9/24/2012

DATE OF REPORT: 9/25/2012

CLIENT JOB #: 12085

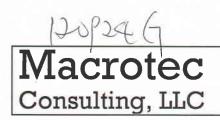
JOBSITE: Hwy 93, McGill, NV

ANALYST: S. Al-Johani

TESC SAMPLE #	CLIENT SAMPLE #	SAMPLE WEIGHT (mg)	TOTAL LEAD (ug)	LEAD CONCENTRATION (% by Weight)	LEAD CONCENTRATION PPM
1	L1	348	< 10.0	< 0.003	< 29
2	L2	329	31,241.5	9.496	94,959
3	L3 Sample weight below SOP guidelines.	170	41,254.8	24.268	242,675
4	L4	305	60,077.0	19.697	196,974
5	L5	352	12.0	0.003	34

Total Sample(s) Analyzed: 5

Reviewed By Authorized Signatory:


Feng Jiang, MS Senior Geologist, Laboratory Director Yuedong Fang, Senior Geologist

The condition of the samples analyzed was acceptable upon receipt per laboratory protocol unless otherwise noted on this report. Results represent the analysis of samples submitted by the customer. Sample information was provided by the customer. This report must not be reproduced, except in full, without the written consent of Triangle Environmental Service Center, Inc. The test report related only to the item(s) tested. This analysis was performed by an AHIA accredited laboratory. AIHA/ELLAP ID: 100527, NYELAP/NELAC ID: 11413.

Minimum Reporting Limit: 20 ug. Lead Based Paint contains 0.5% lead by weight per Federal statute. The OSHA Lead in Construction Standard, 29 CFR 1926.62, is invoked if any lead is present in the sample. Lead-free paint is defined as <0.06% by weight (CPSC).

[LEGEND: mg= milligram, ug= microgram, ppm= parts per million]

Tuesday, September 25, 2012 Page 1 of 1

Phone: (702) 338-8213 Fax: (702) 629-5677

Office@MacrotecConsulting.com

Bulk Sampling Chain of Custody Form

Client Name	MEINEY	
Project Location Hwy 93, McGre, NV		Collection Date 9/18/13 - 9/19/12
Project Location	Hwy 93, McGre, NV	Number LVBEC 004
Technician		Turn Around Time
Laboratory	THISC	Method of Analysis Al Mane
Stop at 1st Posit	tive?: Y/N Composite Sheet Rock?: Y/	N Matrix Jan Cup
Sample # H # Count	Sample Description (Material Type : Description : Color)	Sample Location (General : Room : Specific)
41	Bella Noop Sione	SPENKLES SHACK - Ngue
12	GREEN METAL BEAM	GENDSTAND - preside Ware
13	GREEN DOOR FRAME	RESTROOM - W DEDKNAY
14	YEUN CONCRETE WINDOWSILL	1 - E WALL
15	Brue Wood Door	LANCESSYON SMACK - E WALL
	**	
		, , , , , , , , , , , , , , , , , , , ,
	45	
Relinquished By:	Date: 9/9/2 Receive	d By: Date: 2411 10.
Relinquished By:	Date: Receive	d By: Date:

Appendix F

Anited States Emironmental Protection Agency

This is to certify that

Jason Robert McAllister

In the Jurisdiction of:

Nevada

This certification is valid from the date of issuance and expires June 28, 2015

Adrienne Priselac, Manager, Toxics Office

Communities and Ecosystems Division

NV-I-125427-1

Certification #

14NE 15, 2012

has fulfilled the requirements of the Toxics Substance Control Act (TSCA Section 402 and has received certification to conduct lead-based paint activities pursuant to 40 CFR Part 745.226 as a:

Anited States Environmental Protection Agency

This is to certify that

Macrotec Consulting, LLC

has fulfilled the requirements of the Toxics Substance Control Act (TSCA) Section 402, and has received certification to conduct lead-based paint activities pursuant to 40 CFR Part 745,226

The Jurisdiction of:

Nevada

This certification is valid from the date of issuance and expires July 29, 2014

NV-17067-2

JULY 30 Issued On

Adrienne Priselac, Manager, Toxics Office

Communities and Ecosystems Division

STATE OF NEVADA
DEPARTMENT OF BUSINESS AND INDUSTRY
DIVISION OF INDUSTRIAL RELATIONS
OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION

ASBESTOS CONTROL PROGRAM

DATE 02/15/12

LICENSE NO. IM-0901

THE ASBESTOS ABATEMENT CONSULTANT NAMED BELOW IS LICENSED UNDER THE PROVISIONS OF CHAPTER 618 OF N.R.S. AND N.A.C. THIS LICENSE EXPIRES 02/15/13

Jason McAllister Macrotec Consulting LLC 9724 Mild Weather Ct Las Vegas, NV 89148

DATE: 02/15/12 LICENSE NO: IM-0901 INSPECTOR PROJECT MONITOR

Signature

[Wallet Card - Fold Here]

STATE OF NEVADA
DEPARTMENT OF BUSINESS AND INDUSTRY
DIVISION OF INDUSTRIAL RELATIONS
OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION

Jason McAllister
Macrotec Consulting LLC
HAS PAID THE FEE REQUIRD BY
CHAPTER 618 OF N.A.C. 02/15/13

(NSPO Rev. 2-06)

AIHA

aboratory Accreditation Programs, LLC

AIHA Laboratory Accreditation Programs, LLC

acknowledges that

Schneider Laboratories, Inc.

2512 West Cary Street, Richmond, VA 23220-5117

Laboratory ID: 100527

along with all premises from which key activities are performed, as listed above, has fulfilled the requirements of the AIHA Laboratory Accreditation Programs (AIHA-LAP), LLC accreditation to the ISO/IEC 17025:2005 international standard, General Requirements for the Competence of Testing and Calibration Laboratories in the following:

LABORATORY ACCREDITATION PROGRAMS

- INDUSTRIAL HYGIENE
- **ENVIRONMENTAL MICROBIOLOGY ENVIRONMENTAL LEAD** ENVIR
- Accreditation Expires: 04/01/2013 Accreditation Expires: 04/01/2013
- Accreditation Expires: Accreditation Expires:

Specific Field(s) of Testing (FoT)/Method(s) within each Accreditation Program for which the above named laboratory maintains accreditation is outlined on the attached Scope of Accreditation. Continued accreditation is contingent upon successful on-going compliance with ISO/IEC 17025:2005 and AIHA-LAP, LLC requirements. This certificate is not valid without the attached Scope

of Accreditation. Please review the AIHA-LAP, LLC website (www.aihaaccreditedlabs.org) for the most current Scope.

Christine Sovell

Cheryl O. Morton

Chang G. Charton

Director, AIHA Laboratory Accreditation Programs, LLC

Revision 10: 01/13/2011

Chairperson, Analytical Accreditation Board

Christine Powell

Date Issued: 04/01/2011

United States Department of Commerce National Institute of Standards and Technology

Certificate of Accreditation to ISO/IEC 17025:2005

NVLAP LAB CODE: 200794-0

Triangle Environmental Service Center, Inc. Midlothian, VA

is accredited by the National Voluntary Laboratory Accreditation Program for specific services, isted on the Scope of Accreditation, for:

BULK ASBESTOS FIBER ANALYSIS

This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated January 2009). This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005.

2012-04-01 through 2013-03-31

Effective dates

1 11

Pavid F. Aderman

For the National Institute of Standards and Technology

		4.65	* Selfmilled	
	Cali	bration Chec	K Test Results	
Address/Unit No	M'Gre BAC	l.	nt real results	Pageof
Doules	MGIL, 1			visit.
Device X	1300 A	-		
Date 9/18/12	9/19/12	XRF Serial No	26948	
Contractor	Giney			1 11-
Inspector Name	TRU		Signature ha	MALL
30200			- Jany	(Mage)
NIST SRM Use	1 10			
First Calibration			on Check Tolerance Us	sed mg/c
1 113t Calibration	NIST SRM	6:35 pm		
First Reading	Second Reading	Third Reading	First Average	Difference Between First Average and NIST SRM*
1.1	1.1	1.0	1.1	A /
				0.1
	/	, a		
Second Calibrati	1/00/10	2 7:17 PM		
First Reading	NIST SRM Second Reading	Third Reading	Second Average	Difference Between Second
11	/ 7	Third Reading		Average and NIST SRM*
1-1	1-d	1-1	1./	0-1
				4
		1 /		
Third Calibration		9/19/12 8:4	17AM	
First Reading	NIST SRM Second Reading		Third Average	Difference Between Third
	Second Reading	Third Reading	4. Service	Average and NIST SRM*
1.2	1.2	1.1	1.2	0.2
			72	
	¥-			
		1 1		
Fourth Calibration	Check (if required	1) 9/19/12 9:4	TAM:	10
First Reading	NIST SRM		Fourth Average	Difference Between Fourth
1 iist Reading	Second Reading	Third Reading	, odraj Average	Average and NIST SRM*
			1 1	A STATE OF THE STA

^{*} If the difference of the Calibration Check Average from the NIST SRM film value is greater than the specified Calibration Check Tolerance for this device, consult the manufacturer's recommendations to bring the instrument back into control. Retest all testing combinations tested since the last successful Calibration Check test.