

PHASE II ENVIRONMENTAL SITE ASSESSMENT REPORT 3761 NORTH STEPHANIE STREET PARCEL NO. 028-251-18 PAHRUMP, NEVADA

PREPARED FOR:

Nye County 1510 East Basin Avenue, Suite 2 Pahrump, Nevada 89060

PREPARED BY:

Ninyo & Moore Geotechnical and Environmental Sciences Consultants 6700 Paradise Road, Suite E Las Vegas, Nevada 89119

> January 22, 2009 Project No. 302556002

6700 Paradise Road, Suite E • Las Vegas, Nevada 89119 • Phone (702) 433-0330 • Fax (702) 433-0707

January 22, 2009 Project No. 302556002

Ms. Pamela Webster Assistant Nye County Manager Nye County 1510 East Basin Avenue, Suite 2 Pahrump, Nevada 89060

Subject: Phase II Environmental Site Assessment Report 3761 North Stephanie Street Parcel No. 028-251-18 Pahrump, Nevada

Dear Ms. Webster:

We are pleased to present the results of our Phase II Environmental Site Assessment (ESA) for the property located at 3761 North Stephanie Street in Pahrump, Nye County, Nevada. The study was performed under Brownfields hazardous substances assessment grant Cooperative Agreement number BF-96953701, between the United States Environmental Protection Agency and Nye County, dated September 22, 2005, and in general accordance with the approved Sampling and Analysis Plan (SAP) dated October 17, 2008.

Ninyo & Moore performed a Phase I ESA for the subject site and reported the results in a report dated May 27, 2008. The Phase I ESA noted the historical presence of a methamphetamine manufacturing facility on the subject site. Ninyo & Moore concluded that the historical presence of this facility constituted a recognized environmental condition (REC) for the subject site. Based on the historical usage of the subject site for the manufacture of methamphetamine, Ninyo & Moore concluded that the presence on the subject site of a septic system and an open well casing, which may constitute a direct pathway to groundwater, constituted RECs for the subject site.

Based on the presence of these RECs, hazardous substance contamination of site soil and/or groundwater was judged to be a potential concern and a Phase II ESA was recommended. The

objective of this assessment was to further evaluate RECs noted in the Phase I ESA. Assessment activities included the collection of water samples from the site water well and surface wipe samples of the interior of the site trailer for the presence of chemicals characteristic of methamphetamine production.

Ninyo & Moore was retained by Nye County under a community-wide Brownfields hazardous substances assessment grant to perform a Phase II ESA. The Phase II ESA activities were performed in accordance with the approved SAP, dated October 17, 2008.

We appreciate the opportunity to be of service to you on this project. If you have any questions regarding this report, please call the undersigned at your convenience.

I hereby certify that I am responsible for the services described in this document and for the preparation of this document. The services described in this document have been provided in a manner consistent with the current standards of the profession and to the best of my knowledge comply with all applicable federal, state, and local statutes, regulations, and ordinances.

Sincerely, NINYO & MOORE

Mark C. Gray

Mark C. Gray, C.E.M. Senior Environmental Geologist C.E.M. No. 2155 C.E.M. Expiration Date: 04/24/2010

MCG/GB/ltk

A B D

Gregory A. Beck, C.E.M. Chief Environmental Scientist C.E.M. No. 1874 C.E.M. Expiration Date: 05/27/2010

Ninyo & Moore

Distribution: (2) Addressee (1) Ms. Noemi Emeric – Brownfields Project Manager, USEPA Region 9

TABLE OF CONTENTS

Page

EX	ECUTIV	VE SUMMARY1				
1.	INTRO	DDUCTION				
2.	2.1. 2.2. 2.3. 2.4. 2.5. 2.5.	BACKGROUND.1Site Location and Description1Site History1Previous Work2Geology.2Hydrogeology25.1.Surface Waters5.2.Groundwater3				
3.	3.1. 3.2. 3.3. 3.4. 3.5. 3.4. 3.5. 3.4. 3.5.	E OF WORK.3Health and Safety Plan.3Surface Wipe Sampling4Septic System Sampling5Groundwater Sampling5Field Quality Control Sampling65.1.Field Blanks665.2.Equipment Blanks775.3.Laboratory Quality Control Samples775.4.Duplicate Samples				
4.	RESUI 4.1. 4.2.	TS				
5.	DATA	VALIDATION				
6.	CONCLUSIONS					
7.	RECO	MMENDATIONS9				
8.	LIMIT	ATIONS9				
9.	CERTI	FICATIONS11				
10.	REFER	RENCES12				

- <u>**Tables</u>** Table 1 Summary of Field Sampling</u>
- Table 2 Surface Wipe Analytical Results
- Table 3 Groundwater Analytical Results

Figures

Figure 1 – Site Location Figure 2 – Site Plan

Appendices

- Appendix A Site Photographs
- Appendix B Groundwater Sampling Field Data Sheet
- Appendix C Laboratory Reports and Chain-of-Custody Records

Appendix D – Data Validation Report

EXECUTIVE SUMMARY

Ninyo & Moore was retained by Nye County under a community-wide Brownfields hazardous substances assessment grant to perform a Phase II Environmental Site Assessment (ESA) for the property located at 3761 North Stephanie Street in Pahrump, Nye County, Nevada. The subject property consists of one parcel, comprising approximately 5.0 acres of land and designated by the Nye County Tax Assessor as parcel 028-251-18. The funding for this Phase II ESA has been approved by Nye County and by the United States Environmental Protection Agency, Region 9 (EPA) program for Brownfields Projects.

The following activities were performed in accordance with the approved Sampling and Analysis Plan (SAP):

- Surface wipe samples were collected from the interior of the on-site residential trailer and submitted to Datachem in Salt Lake City, Utah for analysis of methamphetamine, lead, and iodine.
- An attempt was made to collect a liquid or sediment sample from the septic system located to the south of the trailer. However, the cleanout vent pipe was obstructed approximately 3 feet below the surface and no liquid or sediment sample was collected. Vapor concentrations from the site septic system cleanout vent pipe were screened with a photoionization detector (PID) and found to be below the detection limit of the PID.
- A groundwater sample was collected from the site water well and submitted to ESC in Mt. Juliet, Tennessee for analysis of volatile organic compounds (VOC), ignitability/flash point, corrosivity, and reactivity.

The following conclusions were reached by Ninyo & Moore as a result of this Phase II ESA:

- Reported methamphetamine, iodine, and lead concentrations from the surface wipe samples collected from the interior of site residential trailer were below applicable laboratory detection limits in each of the samples collected, with the exception of one sample (KTN1-SWP-10M) collected in the kitchen area.
- Sample KTN1-SWP-10M was collected between the top of the stove and the kitchen exhaust vent hood. The concentration of methamphetamine detected in sample KTN1-SWP-10M was 0.45 micrograms (μ g) per sample or 0.0045 μ g per 100 square centimeters (μ g/100 cm²). This concentration does not exceed the Colorado Department of Public Health and Environment clean up concentration of 0.5 μ g/100 cm² established as the clean up standard for methamphetamine for this assessment.

Ninyo « Moore

- The depth to groundwater in the site well was measured on November 6, 2008 at a depth of 59.50 feet at top of casing or approximately 58.30 feet below ground surface.
- Reported VOC concentrations in the groundwater sample collected from the site well did not exceed applicable laboratory detection limits.
- Reported reactive cyanide and reactive sulfide concentrations in the groundwater sample collected from the site well did not exceed applicable laboratory detection limits.
- Reported corrosivity (pH) in groundwater was 7.4, which is within the acceptable secondary drinking water standard range of greater than 6.5 and less than 8.5 in the groundwater sample collected from the site water well.
- Reported ignitability in groundwater exceeded 170 degrees Fahrenheit in the groundwater sample collected from the site water well.

Based on the reported conclusions of the Phase II ESA, Ninyo & Moore makes no recommenda-

tions for further assessment of the subject site at this time.

Ninyo & Moore

1. INTRODUCTION

Ninyo & Moore was authorized by Nye County, under a community-wide Brownfields hazardous substances assessment grant, to perform a Phase II Environmental Site Assessment (ESA) at the subject property, which consists of one parcel located at 3761 North Stephanie Street in Pahrump, Nye County, Nevada. The ESA activities were performed in accordance with the approved revised Sampling and Analysis Plan (SAP) for the Phase II ESA, dated October 17, 2008.

2. SITE BACKGROUND

The following summary of site background information is based on review of site documents provided by the Client, Ninyo & Moore's previous work at the site, review of governmental agency files, and discussions with persons familiar with the site.

2.1. Site Location and Description

The subject property consists of one parcel, comprising approximately 5.0 acres of land and designated by the Nye County Tax Assessor as parcel 028-251-18. Property use is residential. The subject site is located in Section 25, Township 19 South, Range 52 East, Last Chance Quadrangle, Nye County, Nevada and is zoned "RH-4.5," with current land use listed as Single Family, Personal Property Manufactured Home on Unsecured Roll. The subject site location is presented on Figure 1.

2.2. Site History

Based on a review of historical sources, subject parcel 028-251-18 was undeveloped land until developed as single-family residential property at some point after 1994. According to readily available information in the Phase I ESA report for the property, prepared by Ninyo & Moore and dated May 27, 2008, the site was used as a methamphetamine manufacturing facility circa 1999.

2.3. Previous Work

In the Phase I ESA report, Ninyo & Moore noted the historical presence of a methamphetamine manufacturing facility on the subject site. Ninyo & Moore concluded that the historical presence of this facility constituted a recognized environmental condition (REC) for the subject site. Based on the historical usage of the subject site for the manufacture of methamphetamine, Ninyo & Moore concluded that the presence of an open well casing, which may constitute a direct pathway to groundwater, and a septic system on the subject site constituted RECs for the subject site. Ninyo & Moore recommended that a limited subsurface contamination assessment be performed on the subject site to evaluate whether chemicals utilized in the manufacture of methamphetamines have contaminated groundwater beneath the subject site.

2.4. Geology

The site is located in the Pahrump Valley, which is a structural basin of late Mesozoic and Tertiary age block faulting origin (beginning approximately 100 million years ago). Deposits in the Pahrump Valley are mainly Tertiary age (from 67 to 2 million years old) and Quaternary Age (from 2 million years old to present) unconsolidated sediments derived from the surrounding uplifted mountain ranges, which are composed of sedimentary and igneous rocks. The mountains to the north, east, and west are mostly sedimentary rocks, predominantly carbonates (limestone and dolomite) of Paleozoic and Mesozoic age (between 586 and 67 million years old). The southern and southeastern ranges are generally composed of volcanic rocks, primarily Tertiary and andesite lava flows.

2.5. Hydrogeology

The following sections discuss the site hydrology in terms of both surface waters and groundwater.

2.5.1. Surface Waters

No natural surface water bodies, including ponds, streams, or other bodies of water, are present on the site.

2.5.2. Groundwater

The groundwater aquifer system within Pahrump Valley is complex, consisting of coarse-grained alluvial sand and gravel, inter-bedded with fine-grained valley fill deposits. In general, two principal separate aquifers exist in Pahrump Valley: a series of deep, confined (artesian) water-bearing zones, and a shallow, relatively unconfined aquifer (non-artesian water table). The majority of the groundwater withdrawn in the valley is from the deeper aquifer zones and is generally located at depths estimated up to 200 feet for valley locations. Ninyo & Moore's representatives did not observe any seeps or springs at the subject site during reconnaissance.

Review of the Nevada Division of Water Resources well log database indicated that the static water level may occur approximately 50 to 180 feet below grade in the vicinity of the subject property and measurement of the water level in the site water well indicated that the depth to groundwater was approximately 58 feet below ground surface. Based on topography, groundwater flow direction in the vicinity of the subject property is assumed to be toward the southeast.

3. SCOPE OF WORK

The following sections describe the methods that were used to meet the objectives of the Phase II ESA, including: implementation of a health and safety plan (HASP), a description of the sampling media, locations and rationale, field sampling methods, and analytical methods and protocol. Work was performed in accordance with the approved SAP except where noted.

3.1. Health and Safety Plan

A site-specific HASP was prepared outlining specific safety procedures and equipment used during the site work. Work was conducted as outlined in the HASP, which was on the site in a conspicuous place during field activities. The HASP was reviewed and signed by field personnel prior to their performing fieldwork.

3.2. Surface Wipe Sampling

On November 6, 2008, Ninyo & Moore conducted surface wipe sampling in the interior of the residential trailer located on the site. Four surface wipe samples were collected from surfaces in the kitchen and bathroom of the site trailer. Two samples were collected in the bathroom and two samples were collected in the kitchen.

Each sample area was approximately 100 square centimeters (cm²). Sampling media for methamphetamine and iodine analysis consisted of dry gauze fabric wipes provided by the laboratory and wetted with isopropyl alcohol prior to sampling. Sampling media for lead analysis consisted of cellulose gauze wipes, designated as "ghost wipes" that are specifically designed for lead sampling and pre-moistened with a neutral wiping agent.

After delineating the area to be sampled with masking tape, the sample media was pressed firmly onto the area to be sampled. Wiping was done starting at the outside edge of the sample area and progressed toward the center of the sample area by wiping in concentric squares of decreasing size. Without allowing the sample media to come into contact with any other surface, the sample media was then folded with the sampled side in. The same method was then be used to repeat the sampled of the same area. The sample media was then folded over again so that the sampled side was folded in. The sample media was then placed into a sample container, capped, and numbered. Each sample was placed into labeled, laboratory provided sample containers, sealed, and placed into a secure, chilled ice chest. Since laboratory analysis for methamphetamine, lead, and iodine requires separate wipes, three discreet wipes were collected at each sample location. Sample location identifiers were appended with "M", "L", or "I" for methamphetamine, lead, or iodine analysis, respectively.

Sample containers were shipped to Datachem Laboratories located in Salt Lake City, Utah. A summary of the field sampling information presented in Table 1 provides the location identification, corresponding sample designation, and sample matrix for each of the surface wipe samples collected during this assessment.

3.3. Septic System Sampling

The cleanout vent pipe associated with the septic system located to the south of the trailer was field screened for volatile organic vapors using a photoionization detector (PID) on November 6, 2008. Vapor concentrations from the cleanout vent pipe were found to be below the detection limit of the PID.

An attempt was made to collect a liquid or sediment sample from the septic system. However, the cleanout vent pipe was obstructed approximately 3 feet below the surface and no liquid or sediment sample was collected. The area surrounding the septic system vent pipe was explored with a shovel in order to locate any manhole covers associated with the septic system. No manhole covers or other access points were found.

3.4. Groundwater Sampling

According to information obtained from the State of Nevada Division of Water Resources Well Driller's Report for the site water well, the well was constructed to a depth of approximately 140 feet with 8-inch diameter pipe. The well casing is factory perforated from a depth of 140 feet to 100 feet below the ground surface (bgs) and the well is gravel packed from the bottom to approximately 50 feet bgs. A concrete seal extends from the surface to a depth of 50 feet bgs. The top of the casing is currently open and does not have a cover or locking cap. The site water well location is indicated on Figure 2.

Prior to obtaining groundwater samples for analysis, the static water level was measured in the site water well. Due to the depth of the well and the anticipated volume of water in the well, casing volumes of water were not purged from the well. Instead, approximately 3 gallons of water was purged using a disposable bailer and collected in a measured bucket to record the purge volume. In order to obtain a representative sample from the well, purging continued until stable water quality parameter (temperature, pH, and specific conductance) measurements indicated representative sampling were obtained. Water quality was considered stable if for three consecutive readings:

- Temperature range was no more than +/- 1°C,
- pH varied by no more than 0.2 pH units, and

• Specific conductance readings were within 10% of the average.

Purging criteria was met for the well. A copy of the groundwater sampling field data sheet is included in Appendix B.

A new, disposable polyethylene bailer was used to collect a groundwater sample from the well for analysis for volatile organic compounds (VOC), reactivity, corrosivity, and ignitability. In accordance with the approved SAP, sample containers were labeled with the well number, matrix type, and sample number (e.g. WW1-GW-1). The sample was placed into labeled, laboratory-provided sample containers, and placed into a secure, chilled ice chest. The sample was recorded on an EPA-approved chain-of-custody form for transport to the Environmental Science Corporation (ESC) laboratory in Mt. Juliet, Tennessee. A summary of the field sampling information presented in Table 1 provides the monitoring well identification and corresponding sample designation and sample matrix for each of the groundwater samples collected during this assessment.

3.5. Field Quality Control Sampling

Table 1 provides the sample location identification and corresponding sample designation and sample matrix for each of the quality control samples collected during this assessment.

3.5.1. Field Blanks

In accordance with the approved SAP, a surface wipe field blank was collected for methamphetamine, iodine, and lead to evaluate whether contaminants have been introduced into the wipe samples during the sampling due to ambient conditions or from sample containers. The surface wipe field blank samples were obtained by folding an unused surface wipe field blank sample media in the same manner as an actual sample without allowing the media to come into contact with any surface. The field blanks collected were analyzed for methamphetamine, iodine, and lead. The field blanks were preserved, packaged, and sealed in the manner described in the environmental samples. A separate sample number was assigned to the samples and submitted blind to the laboratory.

Ninyo « Moore

3.5.2. Equipment Blanks

No equipment blanks were collected during sediment sampling due to the fact that sediment sampling was not conducted. No reusable equipment was utilized to collect either surface wipe or groundwater samples and therefore no equipment blanks were collected.

3.5.3. Laboratory Quality Control Samples

In accordance with the approved SAP, a laboratory quality control (QC) groundwater sample was designated for WW1-GW-1. For the water sample, a double volume of the sample was supplied to the laboratory. Two sets of water sample containers were filled and the containers were labeled. Water sample WW1-GW-1 was designated as a laboratory QC sample by a notation on the chain-of-custody record.

3.5.4. Duplicate Samples

In accordance with the approved SAP, a duplicate groundwater sample was collected from the site water well. In order to preserve the "blind" nature of the sample, the groundwater duplicate sample submitted to ESC was labeled as WW7-GW-1. The duplicate groundwater sample was analyzed for VOC, reactivity, corrosivity, and ignitability.

4. **RESULTS**

4.1. Surface Wipe Analytical Results

Surface wipe samples collected during this assessment were analyzed by Datachem Laboratories in Salt Lake City, Utah. Surface wipe samples were analyzed for methamphetamine by method National Institute for Occupational Safety (NIOSH) Manual of Analytical Methods (NMAM) 9111, lead by NIOSH Method 7082, and iodine by NIOSH Method 6005. The results of the laboratory analyses are summarized in Table 2, which provides sample locations along with sample identification, sample matrix, and test results for the targeted chemical

Ninyo « Moore

compounds of this assessment. Copies of the laboratory reports and chain-of-custody records are included in Appendix C.

4.2. Groundwater Analytical Results

Groundwater samples collected during this assessment were analyzed by ESC in Mt. Juliet, Tennessee. Groundwater samples were analyzed for VOC by EPA Method 8260B, reactivity by EPA Method 9012B/9034, corrosivity by EPA Method 9040C, and ignitability by EPA Method 1010A. The results of the laboratory analyses are summarized in Table 3, which provides sample locations along with sample identification, sample matrix, and test results for the targeted chemical compounds of this assessment. Copies of the laboratory reports and chain-of-custody records are included in Appendix C.

5. DATA VALIDATION

A Tier 1A data validation was performed by DataVal, Inc. in accordance with the approved SAP. The data validation findings indicate that the laboratory performance and overall data quality generally met the analytical data quality objectives for the project. A review of the data precision, accuracy, representativeness, and completeness of the reported results showed that the overall data quality was good, and suitable for supporting project decisions. The data validation report is presented in Appendix D.

6. CONCLUSIONS

The following sections present a discussion of the results of the fieldwork and analytical program for the Phase II ESA.

6.1. Residual Surface Contamination

• Reported methamphetamine, iodine, and lead concentrations in surface wipe samples collected from the interior of the residential trailer were below applicable laboratory detection limits in each of the samples collected, with the exception of one sample (KTN1-SWP-10M) collected in the kitchen area.

Ninyo & Moore

Sample KTN1-SWP-10M was collected between the top of the stove and the kitchen exhaust vent hood. The concentration of methamphetamine detected in sample KTN1-SWP-10M was 0.45 micrograms (µg) per sample or 0.0045 µg per 100 square centimeters (µg/100 cm²). This concentration does not exceed the Colorado Department of Public Health and Environment clean up concentration of 0.5 µg/100 cm² established as the clean up standard for methamphetamine for this assessment.

6.2. Septic System Sampling

• Although no liquid or sediment samples were collected from the septic system, based on the results of the surface and groundwater sampling, Ninyo & Moore does not believe that additional efforts to sample the septic system are warranted.

6.3. Groundwater

- The depth to groundwater was measured on November 6, 2008 at a depth of 59.50 feet at top of casing or approximately 58.30 feet bgs.
- Reported VOC, reactive cyanide, and reactive sulfide concentrations in the groundwater sample collected from the site well did not exceed applicable laboratory detection limits.
- Reported corrosivity (pH) in groundwater was 7.4, which is within the acceptable secondary drinking water standard range of greater than 6.5 and less than 8.5 in the groundwater sample collected from the site water well.
- Reported ignitability in groundwater exceeded 170 degrees Fahrenheit in the groundwater sample collected from the site water well.

7. **RECOMMENDATIONS**

Based on the results of this Phase II ESA, Ninyo & Moore makes no recommendations for further assessment activity at the subject site at this time.

8. LIMITATIONS

The environmental services described in this report have been conducted in general accordance with current regulatory guidelines and the standard-of-care exercised by environmental consultants performing similar work in the project area. No warranty, expressed or implied, is made regarding the professional opinions presented in this report. Variations in site conditions may exist and conditions not observed or described in this report may be encountered during subsequent activities. Please also note that this study did not include an evaluation of geotechnical conditions or potential geologic hazards.

Ninyo & Moore's opinions and recommendations regarding environmental conditions, as presented in this report, are based on limited subsurface assessment and chemical analysis. Further assessment of potential adverse environmental impacts from past on-site and/or nearby use of hazardous materials may be accomplished by a more comprehensive assessment. The samples collected and used for testing, and the observations made, are believed to be representative of the area(s) evaluated; however, conditions can vary significantly between sampling locations. Variations in soil and/or groundwater conditions will exist beyond the points explored in this evaluation.

The environmental interpretations and opinions contained in this report are based on the results of laboratory tests and analyses intended to detect the presence and concentration of specific chemical or physical constituents in samples collected from the subject site. The testing and analyses have been conducted by an independent laboratory, which is certified by the State of Nevada to conduct such tests. Ninyo & Moore has no involvement in, or control over, such testing and analysis. Ninyo & Moore, therefore, disclaims responsibility for any inaccuracy in such laboratory results.

Our conclusions, recommendations, and opinions are based on an analysis of the observed site conditions. It should be understood that the conditions of a site could change with time as a result of natural processes or the activities of man at the subject site or nearby sites. In addition, changes to the applicable laws, regulations, codes, and standards of practice may occur due to government action or the broadening of knowledge. The findings of this report may, therefore, be invalidated over time, in part or in whole, by changes over which Ninyo & Moore has no control.

This document is intended to be used only in its entirety. No portion of the document, by itself, is designed to completely represent any aspect of the project described herein. Ninyo & Moore should be contacted if the reader requires any additional information, or has questions regarding content, interpretations presented, or completeness of this document.

Ninyo & Moore

This report is intended exclusively for use by the client. Any use or reuse of the findings, conclusions, and/or recommendations of this report by parties other than the client is undertaken at said parties' sole risk.

9. CERTIFICATIONS

In accordance with NDEP Bureau of Corrective Actions guidelines requiring that all submittals that incorporate laboratory data generated after May 8, 2005 include a statement by a Nevada Certified Environmental Manager (C.E.M.), the following language is included:

I hereby certify that all laboratory analytical data was generated by a laboratory certified by the NDEP for each constituent and media presented herein.

In accordance with the Nevada Revised Statutes 459.500, Section 1, a holder of a certificate who is responsible for a service requiring certification shall ensure that each document relating to the service includes the following language:

I, Gregory A. Beck, hereby certify that I am responsible for the services described in this document and for the preparation of this document. The services described in this document have been provided in a manner consistent with the current standards of the profession and to the best of my knowledge comply with all applicable federal, state, and local statutes, regulations, and ordinances.

Shape A. Be

Date

-99-09

Gregory A Beck, C.E.M. Certified Environmental Manager No.: 1874 Expires: May 27, 2010

Ninyo & Moore

10. REFERENCES

- Ninyo & Moore, 2008a, Phase I Environmental Site Assessment Report, 3761 North Stephanie Street, Parcel No. 028-251-18, Pahrump, Nevada, dated May 27.
- Ninyo & Moore, 2008b, Sampling and Analysis Plan, Phase II Site Investigation, 3761 North Stephanie Street, Parcel No. 028-251-18, Pahrump, Nevada, dated October 17.
- United States Geological Survey, 1968, Last Chance Range Quadrangle: 7.5-minute series (to-pographic), Scale 1:24,000.

TABLES

Sample	Sample Sample Identification		Sample	Field	Equipment	Field	Laboratory
Location	Field	Laboratory	Matrix	Duplicate	Blank	Blank	QC
BATHROOM	BTR1-SWP-1M	8316025001	Surface Wipe				
BATHROOM	BTR1-SWP-2L	8316025010	Surface Wipe				
BATHROOM	BTR1-SWP-3I	8316025006	Surface Wipe				
BATHROOM	BTR1-SWP-4M	8316025002	Surface Wipe				
BATHROOM	BTR1-SWP-5L	8316025011	Surface Wipe				
BATHROOM	BTR1-SWP-6I	8316025007	Surface Wipe				
KITCHEN	KTN1-SWP-7M	8316025003	Surface Wipe				
KITCHEN	KTN1-SWP-8I	8316025008	Surface Wipe				
KITCHEN	KTN1-SWP-9L	8316025012	Surface Wipe				
KITCHEN	KTN1-SWP-10M	8316025004	Surface Wipe				
KITCHEN	KTN1-SWP-11I	8316025009	Surface Wipe				
KITCHEN	KTN1-SWP-12L	8316025013	Surface Wipe				
	KTN1-SWP-13M	8316025005	Surface Wipe			Х	
	KTN1-SWP-14I	8316025015	Surface Wipe			Х	
	KTN1-SWP-15L	8316025014	Surface Wipe			Х	
WATER WELL	WW1-GW-1	L373794-01&02	Water				X
WATER WELL	WW7-GW-1	L373794-03&04	Water	X			

Table 1 - Summary of Field Samplin	Table 1 -	Summary	of Field	Sampling
------------------------------------	-----------	---------	----------	----------

-- Not Applicable

M - methamphetamine

L - lead

I - iodine

				Analyte		
Sample Location	Sample Designation	Sample Collection Date	Methamphetamine	Iodine	Lead	Notes
Cleanup Level Sur		0.5	22	0.043		
BATHROOM	BTR1-SWP-1M	11/6/08	< 0.001			
BATHROOM	BTR1-SWP-2L	11/6/08			< 0.025	
BATHROOM	BTR1-SWP-3I	11/6/08		<0.18		
BATHROOM	BTR1-SWP-4M	11/6/08	< 0.001			
BATHROOM	BTR1-SWP-5L	11/6/08			< 0.025	
BATHROOM	BTR1-SWP-6I	11/6/08		<0.18		
KITCHEN	KTN1-SWP-7M	11/6/08	< 0.001			
KITCHEN	KTN1-SWP-8I	11/6/08		<0.18		
KITCHEN	KTN1-SWP-9L	11/6/08			< 0.025	
KITCHEN	KTN1-SWP-10M	11/6/08	0.0045			
KITCHEN	KTN1-SWP-11I	11/6/08		<0.18		,
KITCHEN	KTN1-SWP-12L	11/6/08			< 0.025	
Field Blank	KTN1-SWP-13M	11/6/08	< 0.001			Field Blank
Field Blank	KTN1-SWP-14I	11/6/08		< 0.18		Field Blank
Field Blank	KTN1-SWP-15L	11/6/08			< 0.025	Field Blank

Table 2 - Surface Wipe Analytical Results

Concentrations expressed in micrograms per 100 square centimeters ($\mu g/100 \text{ cm}^2$)

*Colorado Department of Public Health and Environment 6 CCR 1014-3 State Board of Health, Regulations Pertaining to Cleanup of Methamphetamine Laboratories

-- Not Applicable

M - methamphetamine

L - lead

I - iodine

	Volatile Organic Compounds Wet Chemistry										
Sample Location	Sample Designation	Sample Collection Date	Acetone	Benzene	Toluene	Xylenes	Reactive Cyanide	Reactive Sulfide	Ignitability	Corrositivity (pH)	Notes
Action Level			22000 ¹	5	1,000	10,000	NE	NE	NE	<6.5 or >8.5 ⁴	
Water Well	WW1-GW-1	11/6/08	<50	<1	<5	<3	< 0.000125	< 0.025	DNF at 170°F ³	7.4	Quality Control
Water Well	WW7-GW-1 ²	11/6/08	<50	<1	<5	<3	< 0.000125	< 0.025	DNF at 170°F ³	7.7	WW-1-GW-1 Duplicate

Table 3 - Groundwater Analytical Results

Concentrations expressed in micrograms per liter (μ g/l)

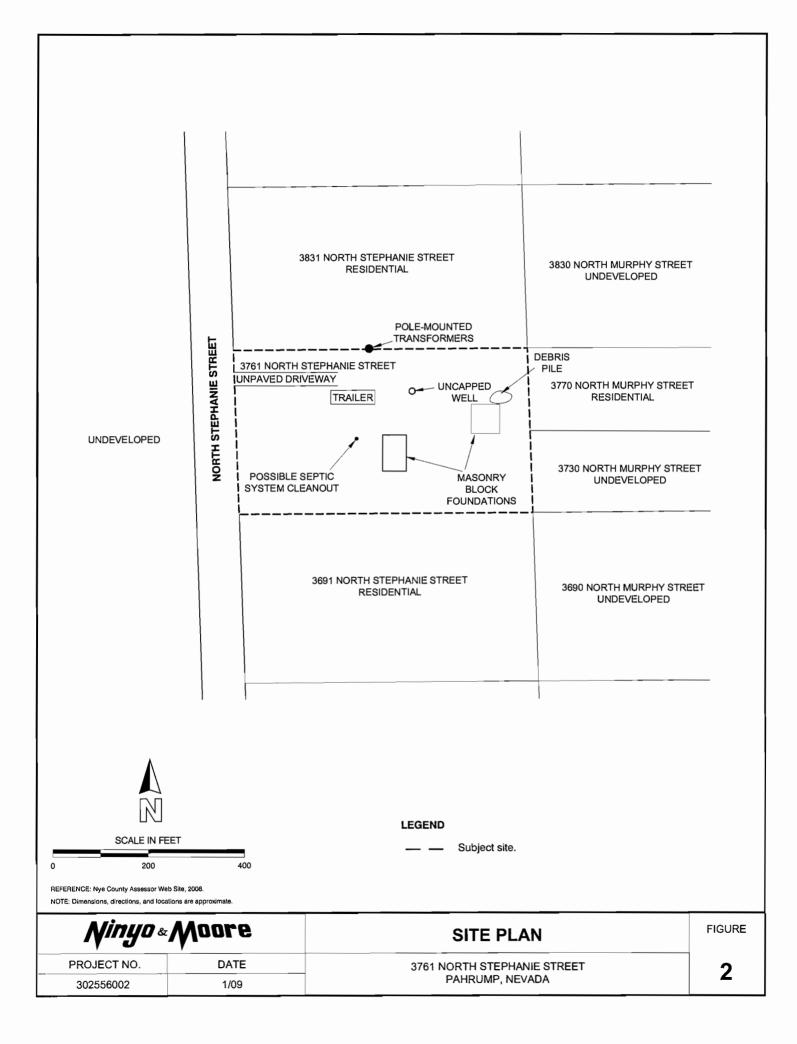
Action Level = National Primary Drinking Water Standards, Maximum Contaminant Level (MCL), unless otherwise noted.

NE - No action level established

¹EPA Region 9 Preliminary Remediation Goal (PRG)

² Field duplicate

³Did Not Flash at 170 degrees Fahrenheit


⁴National Secondary Drinking Water Standard for pH

FIGURES

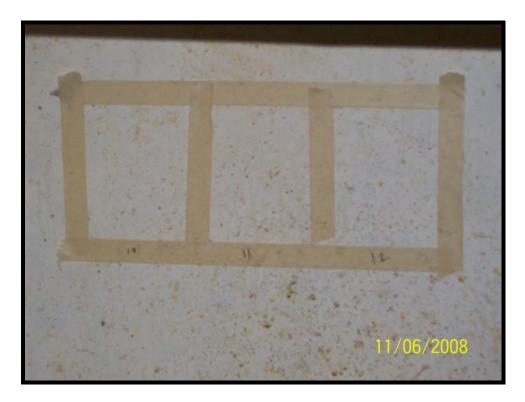
<image/> <image/>		STE Been Street Douglas Street Douglas Street Tim Drive Mason Drive Sherry Arcoure	Cool
0 1500 NOTE: DIMENSIONS, DIRECTIONS, AND LO	3000 NO		
Ninyo & (PROJECT NO. 302556002	DATE 09/08	SITE LOCATION 3761 NORTH STEPHANIE STREET PAHRUMP, NEVADA	FIGURE

Г

APPENDIX A

SITE PHOTOGRAPHS

Photograph 1: View of surface wipe sample locations BTR1-SWP-1M, BTR1-SWP-2L, and BTR1-SWP-3I in bathroom.


Photograph 2: View of surface wipe sample locations BTR1-SWP-4M, BTR1-SWP-5L, and BTR1-SWP-6I in bathroom.

Photograph 3: View of surface wipe sampling locations in kitchen.

Photograph 4: View of surface wipe sample locations KTN1-SWP-7M, KTN1-SWP-8I, and KTN1-SWP-9L in kitchen.

Photograph 5: View of surface wipe sample locations KTN1-SWP-10M, KTN1-SWP-11I, and KTN1-SWP-12L in kitchen.

Photograph 6: View of site water well with open casing.

Photograph 7: View of disposable bailer placed in vent pipe associated with septic system.

APPENDIX B

GROUNDWATER SAMPLING FIELD DATA SHEET

17"9"*	Munle
--------	-------

Groundwater Sampling Field Data Sheet

Project Name: Nye County Date: 11/6/08 By: Mark Grzy Project No.: 302556002 Weather/Site Conditions: Char - Sunny										
Monitoring We		Location: <u>3761 Stephonic St</u>				RL				
		WW-				·		JICPNJAIC	30	
Casing Diameter: $2^{"}$ $4^{"}$ $6^{"}$ Other $9^{"}$ Casing MaterialSCH 40-PVCOther:SteelTotal Depth (ft-TOC):(A) b b c c c G										
A - B = C $4''/8'/4'' = 1.19 \text{ G/FT} = (D)$ Approx. Min.										
Water Column Height (feet)(C) $4''/10'/4'' = 1.51 \text{ G/FT} = (D)$ x $1.5 = (E)$ Purge Vol.										
Distance between TOC and ground surface = (+/-) (1 borehole volume) (1.5 borehole volume) (gallons)										
Purging Method/	Water Level Measurement Equip.: Image: Heron H. 01L 150' Image: Water Line Image: Heron Dipper T Image: Cleaned Purging Method/Equipment: Image: xp-100 Pump Image: Quickie Bailer Image: Kanada Bailer Image: Cleaned									
Sampling Equip	ment: Bailer 🛛	PVC SS	Low F	low 🗌	Pumps	Dedic	ated/Non-dedica	ited 🗌 Peristal	tic Pump	
Sampling Equipment: Bailer PVC SS Low Flow Pumps Dedicated/Non-dedicated Peristaltic Pump Sampling Method/Equipment: PARAMETER USEPA METHOD CONTAINERS/VOLUME/TYPE (VOA/Glass/Plastic PRESERVATIVES										
Bailer Rope Nev	or cleaned?:			YO	_	8260	.6/401	<u></u>	HCL	
Sampled By:	_	MCG		rezet	sivity	90128/ 9034	3/1L+		None	
Sample Time:		14:15 + 14			'	90400				
Sample ID: $WWI - GW - I + ign: tzt: 1:h 1010 A + V$									¥	
Time (24 hr)	PURGE VOL. (gallons)	pH	(μ/	ND. :m)	TEMP. (µS/cm)		DO		nments or, sheen, etc.)	
14:00	1.0	7.01		50		0,5		clear		
14:05	1.0	7.02		19	20.5			- clear		
14:10	1.0	7.01	17	20	20	5,5	-	clear		
								No odo	r	
								·		
Denth (c. NV) :										
Depth to Water Af	ter Purging (ft) = (<u>F)</u>								
Total Vol. Purged (ga	al): ~~	3.0 gal			fax. Draw	down: (J) 1ed Purging:				
$A-B=C; \mathrm{G}_{\mathrm{x}}-$	$B = H_x; F - B = J_z$	$\frac{H_x}{r} - 1 \times 100 = I$	$x = \frac{1}{T}$	$\frac{x - I_1}{x - T_1} x_1$	20 = %	recovery in 2	hrs.			
Laboratory:										
Sample Container	r Lot Number:	L 373794	1-01	-02,	-03,	1-04	/			
Sample Container Lot Number: <u>L373794-01-02, -03, J-04</u> Shipping Arrangements: <u>Fedex Overnight</u>										

APPENDIX C

LABORATORY REPORTS AND CHAIN OF CUSTODY RECORDS

Environmental Science Corporation Mt. Juliet, TN

For: Ninyo and Moore - Las Vegas Project: 302556002 3761 N. Stephanie St L373794

SDG: L373794

November 17, 2008

Sample Receiving and Handling

All sample aliquots were received at the correct temperature, in the proper containers, and with the appropriate preservatives. All method specified holding times were met.

Corrosivity by Method 9040C

Laboratory Control Sample

Samples L373794-03 and 04 were analyzed in analytical batch WG392860. The laboratory control sample associated with these samples was within the laboratory control limits.

Sample Duplicate Analysis

For analytical batch WG392860 sample duplicate analysis was performed on sample L373794-03. The relative percent difference was within the method limits.

Matrix Spike/Matrix Spike Duplicate

Precision for batch WG392860 was evaluated using the LCS / LCSD. The RPDs were within method limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Flashpoint by Method D93/1010A

Laboratory Control Sample

Samples L373794-04 and 03 were analyzed in analytical batch WG393357. The laboratory control sample associated with these samples was within the laboratory control limits.

Sample Duplicate Analysis

For analytical batch WG393357 sample duplicate analysis was performed on sample L373445-01. The relative percent difference was within the method limits.

Matrix Spike/Matrix Spike Duplicate

Precision for batch WG393357 was evaluated using the LCS / LCSD. The RPDs were within method limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Reactive Sulf.(SW846 7.3.4.1) by Method 9034/9030B

Laboratory Control Sample

Samples L373794-04 and 03 were analyzed in analytical batch WG393783. The laboratory control sample associated with these samples was within the laboratory control limits.

Sample Duplicate Analysis

For analytical batch WG393783 sample duplicate analysis was performed on sample L373794-03. The relative percent difference was within the method limits.

Environmental Science Corporation Mt. Juliet, TN

For: Ninyo and Moore - Las Vegas Project: 302556002 3761 N. Stephanie St L373794

SDG: L373794

November 17, 2008

Matrix Spike/Matrix Spike Duplicate

Precision for batch WG393783 was evaluated using the LCS / LCSD. The RPDs were within method limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Reactive CN (SW846 7.3.3.2) by Method 9012B

Laboratory Control Sample

Samples L373794-03 and 04 were analyzed in analytical batch WG393785. The laboratory control sample associated with these samples was within the laboratory control limits.

Sample Duplicate Analysis

For analytical batch WG393785 sample duplicate analysis was performed on sample L373794-03. The relative percent difference was within the method limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Volatile Organic Compounds by Method 8260B

Laboratory Control Sample

Samples L373794-01 and 02 were analyzed in analytical batch WG392914. The laboratory control sample associated with these samples had all target compounds within method limits except for Acrolein.

Sample L373794-01 was analyzed in analytical batch WG392986. The laboratory control sample associated with this sample was within the laboratory control limits for all compounds.

Matrix Spike/Matrix Spike Duplicate

For analytical batch WG392914 matrix spike/matrix spike duplicate analysis was performed on sample L373782-06. The matrix spike recoveries were within laboratory control limits for all target analytes. The relative percent difference exceeded laboratory limits for 2-Chloroethyl vinyl ether.

For analytical batch WG392986 matrix spike/matrix spike duplicate analysis was performed on sample L373779-27. The matrix spike recoveries and relative percent differences were within laboratory control limits for all target analytes.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Leglit.

Nancy F. Winters ESC Representative Environmental Science Corporation

Est. 1970

Mark Gray Ninyo and Moore – Las Vegas 6700 Paradise Rd., Suite E

Las Vegas, NV 89119

Report Summary

Monday January 12, 2009

Report Number: L373794 Samples Received: 11/07/08 Client Project: 302556002

Description: 302556002 3761 N. Stephanie St

The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Entire Report Reviewed By:

Laboratory Certification Numbers

A2LA - 1461-01, AIHA - 100789, AL - 40660, CA - I-2327, CT - PH-0197, FL - E87487 GA - 923, IN - C-TN-01, KY - 90010, KYUST - 0016, NC - ENV375,DW21704, ND - R-140 NJ - TN002, SC - 84004, TN - 2006, VA - 00109, WV - 233 AZ - 0612, MN - 047-999-395, NY - 11742, WI - 998093910

This report may not be reproduced, except in full, without written approval from Environmental Science Corp. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

> 4 Samples Reported: 11/14/08 13:27 Revised: 01/12/09 13:43 Page 1 of 18

ENVIRONMENTAL SCIENCE CORP. REPORT OF ANALYSIS January 12, 2009 Mark Gray Ninyo and Moore - Las Vegas 6700 Paradise Rd., Suite E Las Vegas, NV 89119 ESC Sample # : L373794-01 November 07, 2008 302556002 3761 N. Stephanie St Date Received : Description :

WW1-GW-1 Sample ID . Collected By : Collection Date : Mark Gray 11/06/08 14:15

Det. Limit Units Method Date Dil. Result Parameter Volatile Organics BDL 0.050 mq/l 8260B 11/08/08 1 Acetone Acrolein BDL 0.050 mg/18260B 11/08/08 1 BDL 0.010 mg/l 8260B 11/08/08 1 Acrylonitrile mg/l mg/l Benzene BDL 0.0010 8260B 11/08/08 11/08/08 1 1 0.0010 8260B Bromobenzene BDL. mq/111/08/08 Bromodichloromethane BDL 0.0010 8260B 1 BDL 0.0010 mg/l 8260B 11/08/08 1 Bromoform Bromomethane BDL 0.0050 mg/l 8260B 11/08/08 1 mg/111/08/08 11/08/08 n-Butylbenzene BDI. 0.0010 8260B 1 1 mg/1 8260B 0.0010 sec-Butylbenzene BDL tert-Butylbenzene mg/111/08/08 BDL 0.0010 8260B 1 Carbon tetrachloride BDL 0.0010 mg/l 8260B 11/08/08 1 mg/l mg/l Chlorobenzene BDL. 0.0010 8260B 11/08/08 1 11/08/08 Chlorodibromomethane 0.0010 8260B BDL 1 BDL 0.0050 mg/18260B 11/08/08 ī Chloroethane 2-Chloroethyl vinyl ether BDL 0.050 mg/1 8260B 11/08/08 Chloroform BDL 0.0050 mg/l 8260B 11/08/08 1 mg/l mg/l 11/08/08 11/08/08 8260B Chloromethane BDI. 0.0025 1 0.0010 8260B BDL 1 2-Chlorotoluene 0.0010 mq/18260B 11/08/08 BDL 1 4-Chlorotoluene 1,2-Dibromo-3-Chloropropane BDL 0.0050 mg/l 8260B 11/08/08 1 1,2-Dibromoethane BDL 0.0010 mg/l 8260B 11/08/08 1 mg/l mg/l Dibromomethane BDI. 0.0010 8260B 11/08/08 1 11/08/08 0.0010 8260B 1,2-Dichlorobenzene BDL 1 1,3-Dichlorobenzene BDL 0.0010 mg/l8260B 11/08/08 1 1,4-Dichlorobenzene BDL 0.0010 mg/l 8260B 11/08/08 1 Dichlorodifluoromethane BDL 0.0050 mg/l 8260B 11/08/08 1 mg/l mg/l 8260B 1,1-Dichloroethane BDL 0.0010 11/08/08 1 11/08/08 1.2-Dichloroethane BDL 0.0010 8260B 1 0.0010 mg/18260B 11/08/08 1,1-Dichloroethene BDL 1 cis-1,2-Dichloroethene BDL 0.0010 mg/l 8260B 11/08/08 1 mg/l mg/l 8260B 8260B 11/08/08 11/08/08 trans-1,2-Dichloroethene BDL 0.0010 1 1,2-Dichloropropane 0.0010 BDL. 1 11/08/08 BDL 0.0010 mq/18260B 1,1-Dichloropropene 1 0.0010 mg/18260B 11/08/08 1 1,3-Dichloropropane BDL cis-1,3-Dichloropropene BDL 0.0010 mg/l 8260B 11/08/08 1 mg/l mg/l trans-1,3-Dichloropropene BDL 0.0010 8260B 11/08/08 1 8260B 11/08/08 1 2,2-Dichloropropane Di-isopropyl ether Ethylbenzene 0.0010 BDL 11/08/08 BDL 0.0010 mg/l 8260B 1 mg/l BDL 0.0010 8260B 11/08/08 1 Hexachloro-1,3-butadiene BDL 0.0010 mg/l 8260B 11/08/08 1 11/08/08 11/08/08 Isopropylbenzene BDI. 0.0010 mg/l 8260B 1 mg/l p-Isopropyltoluene 0.0010 8260B ٦ BDL

BDL - Below Detection Limit

Det. Limit - Practical Quantitation Limit (PQL)

Page 2 of 18

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858

Tax I.D. 62-0814289

3761 N STEPHANIE ST

302556002

1-800-767-5859 Fax (615) 758-5859

Est. 1970

Site ID :

Project # :

Environmental Science Corp.					12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859 Tax I.D. 62-0814289 Est. 1970
					EBC. 1970
Mark Gray Ninyo and Moore - Las Vegas 6700 Paradise Rd., Suite E Las Vegas, NV 89119	REPOR	T OF ANALYSIS		January 12,	2009
Date Received : November 07, 200				ESC Sample #	# : L373794-01
Description : 302556002 3761 N.	Stephanie	St		Site ID :	3761 N STEPHANIE ST
Sample ID : WW1-GW-1				Project # :	302556002
Collected By : Mark Gray Collection Date : 11/06/08 14:15					
Parameter	Result	Det. Limit	Units	Method	Date Dil.
2-Butanone (MEK) Methylene Chloride 4-Methyl-2-pentanone (MIBK) Methyl tert-butyl ether Naphthalene n-Propylbenzene Styrene 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,2,2-Tetrachloroethane 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trichloroethane Trichloroethane Trichloroethane 1,2,3-Trichloropenane 1,2,3-Trichloropenane 1,2,3-Trichloropethane 1,2,3-Trichloropethane 1,2,3-Trichloropethane 1,2,3-Trichloropethane 1,2,3-Trichloropethane 1,2,3-Trimethylbenzene 1,3,5-Trimethylbenzene Vinyl chloride Xylenes, Total	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	0.010 0.0050 0.010 0.0010	<pre>mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l</pre>	8260B 8260B	11/08/08 1 11/08/08 1 11/08/
Surrogate Recovery Toluene-d8 Dibromofluoromethane 4-Bromofluorobenzene	103. 107. 109.		<pre>% Rec. % Rec. % Rec.</pre>	8260B 8260B 8260B	11/08/08 1 11/08/08 1 11/08/08 1

. Reported: 11/14/08 13:27 Revised: 01/12/09 13:44

Page 3 of 18

ENVIRONMENTAL SCIENCE CORP. 12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

	REPOR	F OF ANALYSIS				
Mark Gray				January 12, 200	9	
Ninyo and Moore - Las Vegas						
6700 Paradise Rd., Suite E						
Las Vegas, NV 89119						
				ESC Sample # :	L373794-02	
Date Received : November 07, 200	8			Lee campio "		
Description : 302556002 3761 N.		St				
F	•			Site ID : 37	61 N STEPHANI	E ST
Sample ID : WW7-GW-1						
				Project # : 3	802556002	
Collected By : Mark Gray						
Collection Date : 11/06/08 14:30						
Parameter	Result	Det. Limit	Units	Method	Date	Dil.
1414110001						
Volatile Organics						
Acetone	BDL	0.050	mg/l	8260B	11/08/08	1
Acrolein	BDL	0.050	mg/l	8260B	11/08/08	1
Acrylonitrile	BDL	0.010	mg/l	8260B	11/08/08	1
Benzene	BDL	0.0010	mg/l	8260B	11/08/08	1
Bromobenzene	BDL	0.0010	mg/l	8260B	11/08/08	1
Bromodichloromethane	BDL	0.0010	mg/l	8260B	11/08/08	1 1
Bromoform	BDL	0.0010	mg/l	8260B 8260B	11/08/08 11/08/08	1
Bromomethane	BDL BDL	0.0050 0.0010	mg/l mg/l	8260B	11/08/08	1
n-Butylbenzene	BDL	0.0010	mg/l	8260B	11/08/08	1
sec-Butylbenzene tert-Butylbenzene	BDL	0.0010	mg/1	8260B	11/08/08	1
Carbon tetrachloride	BDL	0.0010	mg/1	8260B	11/08/08	ī
Chlorobenzene	BDL	0.0010	mg/1	8260B	11/08/08	ī
Chlorodibromomethane	BDL	0.0010	mg/1	8260B	11/08/08	ī
Chloroethane	BDL	0.0050	mg/1	8260B	11/08/08	1
2-Chloroethyl vinyl ether	BDL	0.050	mg/l	8260B	11/08/08	1
Chloroform	BDL	0.0050	mg/l	8260B	11/08/08	1
Chloromethane	BDL	0.0025	mg/l	8260B	11/08/08	1
2-Chlorotoluene	BDL	0.0010	mg/l	8260B	11/08/08	1
4-Chlorotoluene	BDL	0.0010	mg/l	8260B	11/08/08	1
1,2-Dibromo-3-Chloropropane	BDL	0.0050	mg/l	8260B	11/08/08	1
1,2-Dibromoethane	BDL	0.0010	mg/l	8260B	11/08/08	1
Dibromomethane	BDL	0.0010	mg/l	8260B	11/08/08	1
1,2-Dichlorobenzene	BDL	0.0010	mg/l	8260B	11/08/08	1
1,3-Dichlorobenzene	BDL	0.0010	mg/l	8260B	11/08/08	1
1,4-Dichlorobenzene	BDL	0.0010	mg/l	8260B	11/08/08	1 1
Dichlorodifluoromethane	BDL BDL	0.0050 0.0010	mg/l mg/l	8260B 8260B	11/08/08 11/08/08	1
1,1-Dichloroethane	BDL	0.0010	mg/l	8260B	11/08/08	1
1,2-Dichloroethane 1,1-Dichloroethene	BDL	0.0010	mg/l	8260B	11/08/08	1
cis-1,2-Dichloroethene	BDL	0.0010	mg/1	8260B	11/08/08	ī
trans-1,2-Dichloroethene	BDL	0.0010	mg/1	8260B	11/08/08	ī
1,2-Dichloropropane	BDL	0.0010	mg/1	8260B	11/08/08	ĩ
1,1-Dichloropropene	BDL	0.0010	mg/1	8260B	11/08/08	ī
1,3-Dichloropropane	BDL	0.0010	mg/l	8260B	11/08/08	1
cis-1,3-Dichloropropene	BDL	0.0010	mg/l	8260B	11/08/08	1
trans-1,3-Dichloropropene	BDL	0.0010	mg/l	8260B	11/08/08	1
2,2-Dichloropropane	BDL	0.0010	mg/l	8260B	11/08/08	1
Di-isopropyl ether	BDL	0.0010	mg/l	8260B	11/08/08	1
Ethylbenzene	BDL	0.0010	mg/l	8260B	11/08/08	1
Hexachloro-1,3-butadiene	BDL	0.0010	mg/l	8260B	11/08/08	1
Isopropylbenzene	BDL	0.0010	mg/l	8260B	11/08/08	1
p-Isopropyltoluene	BDL	0.0010	mg/l	8260B	11/08/08	1

BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit(PQL)

Page 4 of 18

Environmental Science Corp.					Mt. Juliet, TN 37 (615) 758-5858 1-800-767-5859 Fax (615) 758-585	9
					Tax I.D. 62-08142	89
					Est. 1970	
	REPOR	T OF ANALYSIS				
Mark Gray Ninyo and Moore – Las Vegas 6700 Paradise Rd., Suite E Las Vegas, NV 89119				January 12,	2009	
				ESC Sample	# : L373794-02	
Date Received : November 07, 200 Description : 302556002 3761 N.		St				
Sample ID : WW7-GW-1				Site ID :	3761 N STEPHAN	IE ST
-				Project # :	302556002	
Collected By : Mark Gray Collection Date : 11/06/08 14:30						
Parameter	Result	Det. Limit	Units	Method	Date	Dil.
2-Butanone (MEK)	BDL	0.010	mg/l	8260B	11/08/08	1
Methylene Chloride	BDL	0.0050	mg/l	8260B	11/08/08	1
4-Methyl-2-pentanone (MIBK)	BDL	0.010	mg/l	8260B	11/08/08	1
Methyl tert-butyl ether	BDL	0.0010	mg/l	8260B	11/08/08	1
Naphthalene	BDL	0.0050	mg/l	8260B	11/08/08	1
n-Propylbenzene	BDL	0.0010	mg/l	8260B	11/08/08	1
Styrene	BDL	0.0010	mg/l	8260B	11/08/08	1
1,1,1,2-Tetrachloroethane	BDL	0.0010	mg/l	8260B	11/08/08	1 1
1,1,2,2-Tetrachloroethane	BDL BDL	0.0010 0.0010	mg/l mg/l	8260B 8260B	11/08/08 11/08/08	1
1,1,2-Trichloro-1,2,2-trifluoro	BDL	0.0010	mq/1	8260B	11/08/08	1
Tetrachloroethene Toluene	BDL	0.0010	mg/l	8260B	11/08/08	i
1,2,3-Trichlorobenzene	BDL	0.0010	mg/1	8260B	11/08/08	ī
1,2,4-Trichlorobenzene	BDL	0.0010	mg/1	8260B	11/08/08	1
1,1,1-Trichloroethane	BDL	0.0010	mg/l	8260B	11/08/08	1
1,1,2-Trichloroethane	BDL	0.0010	mg/l	8260B	11/08/08	1
Trichloroethene	BDL	0.0010	mg/l	8260B	11/08/08	1
Trichlorofluoromethane	BDL	0.0050	mg/l	8260B	11/08/08	1
1,2,3-Trichloropropane	BDL	0.0010	mg/l	8260B	11/08/08	1
1,2,4-Trimethylbenzene	BDL	0.0010	mg/l	8260B	11/08/08	1
1,2,3-Trimethylbenzene	BDL	0.0010	mg/l	8260B	11/08/08	1
1,3,5-Trimethylbenzene	BDL	0.0010	mg/l	8260B	11/08/08	1
Vinyl chloride	BDL	0.0010	mg/l	8260B	11/08/08	1
Xylenes, Total	BDL	0.0030	mg/l	8260B	11/08/08	1
Surrogate Recovery	101		% Rec.	8260B	11/08/08	1
Toluene-d8 Dibromofluoromethane	101. 105.		* Rec.	8260B	11/08/08	1
4-Bromofluorobenzene	105.		* Rec.	8260B	11/08/08	1
A-DIOWOIINOIODENZENE	105.			02002	11,00,00	-

. Reported: 11/14/08 13:27 Revised: 01/12/09 13:44

-

Page 5 of 18

12065 Lebanon Rd.

Environmental Science Corp.					12065 Lebanon Rd. Mt. Juliet, TN 373 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859 Tax I.D. 62-081428 Est. 1970	Ð			
REPORT OF ANALYSIS Mark Gray January 12, 2009 Ninyo and Moore - Las Vegas 6700 Paradise Rd., Suite E									
Las Vegas, NV 89119									
Providencial Neurophyse 67 - 0				ESC Sample #	: L373794-03				
Date Received : November 07, 2 Description : 302556002 3761		St		Site ID :	3761 N STEPHANI	E ST			
Sample ID : WW1-GW-1				Project # :	302556002				
Collected By : Mark Gray Collection Date : 11/06/08 14:15				110jeet # .	302330002				
Parameter	Result	Det. Limit	Units	Method	Date	Dil.			
Corrosivity	7.4			9040C	11/10/08	1			
Flashpoint	See Footnote		deg F	D93/1010A	11/13/08	1			
Reactive CN (SW846 7.3.3.2)	BDL	0.125	mg/l	9012B	11/14/08	1			
Reactive Sulf.(SW846 7.3.4.1)	BDL	25.	mg/l	9034/9030B	11/14/08	1			

. Reported: 11/14/08 13:27 Revised: 01/12/09 13:44 L373794-03 (FLASHPOINT) - Did Not Flash @ 170f

Page 6 of 18

Environmental Science Corp.					12065 Lebanon Rd. Mt. Juliet, TN 37 (615) 758-5858 1-800-767-5859 Fax (615) 758-585 Tax I.D. 62-08142 Est. 1970	122 9				
REPORT OF ANALYSIS Mark Gray January 12, 2009 Ninyo and Moore – Las Vegas 6700 Paradise Rd., Suite E Las Vegas, NV 89119										
Date Received : November 07, 2 Description : 302556002 3761 Sample ID : WW7-GW-1 Collected By : Mark Gray Collection Date : 11/06/08 14:30	ESC Sample # Site ID : Project # :	3761 N STEPHAN	IE ST							
Parameter	Result	Det. Limit	Units	Method	Date	Dil.				
Corrosivity	7.7			9040C	11/10/08	1				
Flashpoint	See Footnote		deg F	D93/1010A	11/13/08	l				
Reactive CN (SW846 7.3.3.2)	BDL	0.125	mg/l	9012B	11/14/08	1				
Reactive Sulf.(SW846 7.3.4.1)	BDL	25.	mg/l	9034/9030B	11/14/08	1				

Reported: 11/14/08 13:27 Revised: 01/12/09 13:44 L373794-04 (FLASHPOINT) - Did Not Flash @ 170f

Page 7 of 18

Attachment A List of Analytes with QC Qualifiers

Sample Number	Work Group	Sample Type	Analyte	Run ID	Qualifier
L373794-01	WG392914	SAMP	Acrolein	R530489	J4
L373794-02	WG392914	SAMP	Acrolein	R530489	J4
L373794-03	WG392860	SAMP	Corrosivity	R531165	тв
	WG393783	SAMP	Reactive Sulf.(SW846 7.3.4.1)	R534490	Q
L373794-04	WG392860	SAMP	Corrosivity	R531165	T8
	WG393783	SAMP	Reactive Sulf.(SW846 7.3.4.1)	R534490	Q

Page 8 of 18

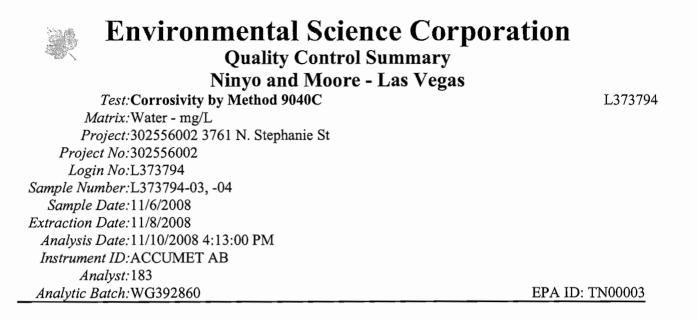
Attachment B Explanation of QC Qualifier Codes

Qualifier	Meaning
J4	The associated batch QC was outside the established quality control range for accuracy.
Q	(ESC) Sample held beyond the accepted holding time.
Т8	(ESC) - Additional method/sample information: Sample(s) received past/too close to holding time expiration.

Qualifier Report Information

ESC utilizes sample and result qualifiers as set forth by the EPA Contract Laboratory Program and as required by most certifying bodies including NELAC. In addition to the EPA qualifiers adopted by ESC, we have implemented ESC qualifiers to provide more information pertaining to our analytical results. Each qualifier is designated in the qualifier explanation as either EPA or ESC. Data qualifiers are intended to provide the ESC client with more detailed information concerning the potential bias of reported data. Because of the wide range of constituents and variety of matrices incorporated by most EPA methods, it is common for some compounds to fall outside of established ranges. These exceptions are evaluated and all reported data is valid and useable unless qualified as 'R' (Rejected).

Definitions


- Accuracy The relationship of the observed value of a known sample to the true value of a known sample. Represented by percent recovery and relevant to samples such as: control samples, matrix spike recoveries, surrogate recoveries, etc.
- Precision The agreement between a set of samples or between duplicate samples. Relates to how close together the results are and is represented by Relative Percent Differrence.
- Surrogate Organic compounds that are similar in chemical composition, extraction, and chromotography to analytes of interest. The surrogates are used to determine the probable response of the group of analytes that are chemically related to the surrogate compound. Surrogates are added to the sample and carried through all stages of preparation and analyses.
- TIC Tentatively Identified Compound: Compounds detected in samples that are not target compounds, internal standards, system monitoring compounds, or surrogates.

Page 9 of 18

Summary of Remarks For Samples Printed 01/12/09 at 13:44:04

TSR Signing Reports: 288 R5 - Desired TAT

Sample: L373794-01 Account: NINYOLNV Received: 11/07/08 09:00 Due Date: 11/14/08 00:00 RPT Date: 11/14/08 13:27 MS/MSD this sample Sample: L373794-02 Account: NINYOLNV Received: 11/07/08 09:00 Due Date: 11/14/08 00:00 RPT Date: 11/14/08 13:27 Sample: L373794-03 Account: NINYOLNV Received: 11/07/08 09:00 Due Date: 11/14/08 00:00 RPT Date: 11/14/08 13:27 Sample: L373794-04 Account: NINYOLNV Received: 11/07/08 09:00 Due Date: 11/14/08 00:00 RPT Date: 11/14/08 13:27

	Method Blank					
Analyte	CAS	PQL				
Corrosivity		7.20				

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Corrosivity	7.42	7.40	99.7	97.19 - 102.8	

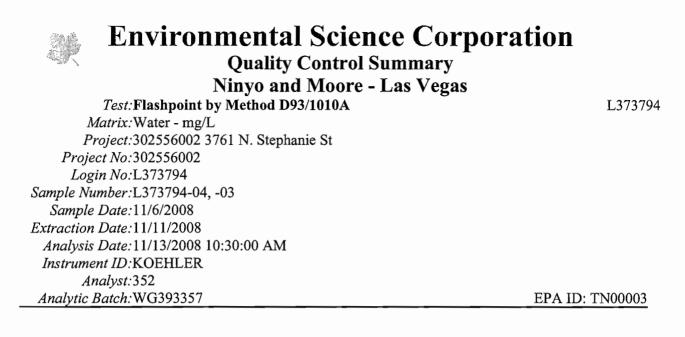
Laboratory Control Sample Duplicate (LCSD)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Corrosivity	7.42	7.50	101	97.19 - 102.8	

Environmental Science Corporation Quality Control Summary Ninyo and Moore - Las Vegas Test: Corrosivity by Method 9040C L373794 Matrix: Water - mg/L Project: 302556002 3761 N. Stephanie St Project No: 302556002 Login No:L373794 Sample Number:L373794-03, -04 Sample Date: 11/6/2008 Extraction Date: 11/8/2008 Analysis Date: 11/10/2008 4:13:00 PM Instrument ID: ACCUMET AB

EPA ID: TN00003

Laboratory Control Sample/ Laboratory Control Sample Duplicate


	Spike		%		%	Control	%	Control
Analyte	_	LCS	Rec	LCSD	Rec	Limits	Qualifier RPD	Limits Qualifier
Corrosivity	7.42	7.40	99.7	7.50	101 9	97.19-102.8	1.3	20

Sample Duplicate

L373794-03

Name	Sample Results	Results Duplicate	%RPD	Limit	Qualifiers
Corrosivity	7.40	7.60	2.7	20	

Analyst:183 Analytic Batch:WG392860

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Flashpoint	82.0	81.0	98.8	96 - 103	

Laboratory Control Sample Duplicate (LCSD)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Flashpoint	82.0	83.0	101	96 - 103	

Sample Date:11/6/2008 Extraction Date:11/11/2008 Analysis Date:11/13/2008 10:30:00 AM Instrument ID:KOEHLER Analyst:352 Analytic Batch:WG393357

EPA ID: TN00003

L373794

Laboratory Control Sample/ Laboratory Control Sample Duplicate

	Spike		%		%	Control	%	Control
Analyte	-	LCS	Rec	LCSD	Rec	Limits	Qualifier RPD	Limits Qualifier
Flashpoint	82.0	81.0	98.8	83.0	101	96-103	2.4	7

Sample Duplicate L373445-01

Name	Sample Results	Results Duplicate	%RPD	Limit	Qualifiers
Flashpoint	0.0000	0.0000			

Environmental Science Corpora Quality Control Summary Ninyo and Moore - Las Vegas	tion
Test: Reactive CN (SW846 7.3.3.2) by Method 9012B	L373794
Matrix: Water - mg/L	L575774
Project: 302556002 3761 N. Stephanie St	
Project No:302556002	
Login No:L373794	
Sample Number:L373794-03, -04	
Sample Date:11/6/2008	
Extraction Date:11/13/2008	
Analysis Date:11/14/2008 11:33:00 AM	
Instrument ID:LACHAT4	
Analyst:	
Analytic Batch:WG393785	EPA ID: TN00003
Sample Duplicate	

Name	Sample Results	Results Duplicate	%RPD	Limit	Qualifiers
Reactive CN (SW846	0.0000	0.0000			

Environmental Science Corporation Quality Control Summary Ninyo and Moore - Las Vegas Test: Reactive Sulf.(SW846 7.3.4.1) by Method 9034/9030B L373794 Matrix: Water - mg/L Project:302556002 3761 N. Stephanie St Project No:302556002 Login No:L373794 Sample Number:L373794-04, -03 Sample Date: 11/6/2008 Extraction Date:11/13/2008 Analysis Date: 11/14/2008 10:00:00 AM Instrument ID:NONE Analyst:352 Analytic Batch: WG393783 EPA ID: TN00003

Analyte	CAS	PQL
Reactive Sulf.(SW846	57.3.4.1)	<25.0

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Reactive Sulf.(SW846 7.3.4.1)	100	96.0	96.0	70 - 130	

Laboratory Control Sample Duplicate (LCSD)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Reactive Sulf.(SW846 7.3.4.1)	100	96.0	96.0	70 - 130	

Environmental Science Corporation Quality Control Summary Ninyo and Moore - Las Vegas Test: Reactive Sulf.(SW846 7.3.4.1) by Method 9034/9030B Matrix: Water - mg/L Project: 302556002 3761 N. Stephanie St Project No:302556002 Login No:L373794 Sample Number:L373794-04, -03 Sample Date:11/6/2008 Extraction Date:11/13/2008 Analysis Date:11/14/2008 10:00:00 AM Instrument ID:NONE

EPA ID: TN00003

L373794

Laboratory Control Sample/ Laboratory Control Sample Duplicate

	Spike		%		%	Control	% Control
Analyte		LCS	Rec	LCSD	Rec	Limits	Qualifier RPD Limits Qualifier
Reactive Sulf.(SW846	100	96.0	96.0	96.0	96.0	70-130	0.0 20

Sample Duplicate

L373**7**94-03

Name	Sample Results	Results Duplicate	%RPD	Limit	Qualifiers
Reactive Sulf.(SW846	0.0000	0.0000			

Analyst:352 Analytic Batch:WG393783

Quality Control Summary

Ninyo and Moore - Las Vegas

L373794

Test: Volatile Organic Compounds by Method 8260B Matrix: Water - mg/L Project: 302556002 3761 N. Stephanie St Project No: 302556002 Login No: L373794 Sample Number: L373794-01, -02 Sample Date: 11/6/2008 Analysis Date: 11/8/2008 Instrument ID: VOCMS20 Analyst: 126 Analytic Batch: WG392914

EPA ID: TN00003

Method Blank						
Analyte	CAS	PQL				
Dichlorodifluoromethane	75-71-8	<0.0050				
Chloromethane	74-87-3	<0.0030				
Vinyl chloride	75-01-4	<0.0023				
Bromomethane	74-83-9	<0.0010				
Chloroethane	75-00-3	<0.0050				
Trichlorofluoromethane	75-69-4	<0.0050				
Acrolein	107-02-8	<0.0500				
1,1-Dichloroethene	75-35-4	<0.0010				
1,1,2-Trichloro-1,2,2-trifluoroethar		< 0.0010				
Acetone	67-64-1	<0.0500				
Methylene Chloride	75-09-2	< 0.0050				
Acrylonitrile	107-13-1	< 0.0100				
trans-1,2-Dichloroethene	156-60-5	< 0.0010				
Methyl tert-butyl ether	1634-04-4	< 0.0010				
1,1-Dichloroethane	75-34-3	< 0.0010				
Di-isopropyl ether	108-20-3	< 0.0010				
2,2-Dichloropropane	594-20-7	< 0.0010				
cis-1,2-Dichloroethene	156-59-2	< 0.0010				
2-Butanone (MEK)	78-93-3	< 0.0100				
Chloroform	67-66-3	< 0.0050				
1,1,1-Trichloroethane	71-55-6	< 0.0010				
Carbon tetrachloride	56-23-5	< 0.0010				
1,1-Dichloropropene	563-58-6	< 0.0010				
Benzene	71-43-2	< 0.0010				
1,2-Dichloroethane	107-06-2	< 0.0010				
Trichloroethene	79 - 01-6	< 0.0010				
1,2-Dichloropropane	78-87-5	< 0.0010				
Dibromomethane	74-95-3	< 0.0010				
Bromodichloromethane	75-27-4	< 0.0010				
2-Chloroethyl vinyl ether	110-75-8	< 0.0500				
cis-1,3-Dichloropropene	10061-01-5	< 0.0010				
4-Methyl-2-pentanone (MIBK)	108-10-1	< 0.0100				
Toluene	108-88-3	< 0.0050				
trans-1,3-Dichloropropene	10061-02-6	< 0.0010				
1,1,2-Trichloroethane	79-00-5	< 0.0010				

Method Blank

Analyte

Ethylbenzene

m&p-Xylene

o-Xylene

Bromoform

1,2,3-Trimethylbenzene

1,2,4-Trichlorobenzene Hexachloro-1,3-butadiene

1,2,3-Trichlorobenzene

Naphthalene

1,2-Dibromo-3-Chloropropane

Quality Control Summary for client sample(s) WW1-GW-1, WW7-GW-1

1,2-Dichlorobenzene n-Butylbenzene

Styrene

Environmental Science Corporation

Quality Control Summary

Ninvo and Moore - Las Vegas

Test: Volatile Organic Compounds by Method 8260B

Method Blank

L373794

Matrix: Water - mg/L Project: 302556002 3761 N. Stephanie St Project No:302556002 Login No:L373794 Sample Number:L373794-01, -02 Sample Date: 11/6/2008 Analysis Date: 11/8/2008 Instrument ID: VOCMS20 Analyst:126 Analytic Batch:WG392914

CAS PQL 127-18-4 < 0.0010 Tetrachloroethene 142-28-9 < 0.0010 1,3-Dichloropropane 124-48-1 Chlorodibromomethane < 0.0010 1.2-Dibromoethane 106-93-4 < 0.0010 108-90-7 Chlorobenzene < 0.0010 < 0.0010 1,1,1,2-Tetrachloroethane 630-20-6 100-41-4 < 0.0010 1330-20-7 < 0.0030 1330-20-7 < 0.0030 100-42-5 < 0.0010 75-25-2 < 0.0010 Isopropylbenzene 98-82-8 < 0.0010 < 0.0010 Bromobenzene 108-86-1 1,1,2,2-Tetrachloroethane 79-34-5 < 0.0010 1,2,3-Trichloropropane 96-18-4 < 0.0010 n-Propylbenzene 103-65-1 < 0.0010 2-Chlorotoluene 95-49-8 < 0.0010 4-Chlorotoluene 106-43-4 < 0.0010 1,3,5-Trimethylbenzene 108-67-8 < 0.0010 98-06-6 < 0.0010 tert-Butylbenzene 1,2,4-Trimethylbenzene 95-63-6 < 0.0010 sec-Butylbenzene 135-98-8 < 0.0010 1,3-Dichlorobenzene 541-73-1 < 0.0010 99-87-6 p-Isopropyltoluene < 0.0010 1,4-Dichlorobenzene 106-46-7 < 0.0010

< 0.0010

< 0.0010

< 0.0010

< 0.0050

< 0.0010

< 0.0010

< 0.0050

< 0.0010

526-73-8

104-51-8

96-12-8

120-82-1

87-68-3

91-20-3

87-61-6

95-50-1

EPA ID: TN00003

21 of 36

Quality Control Summary

Ninyo and Moore - Las Vegas

L373794

Test: Volatile Organic Compounds by Method 8260B Matrix: Water - mg/L Project: 302556002 3761 N. Stephanie St Project No: 302556002 Login No: L373794 Sample Number: L373794-01 Sample Date: 11/6/2008 Analysis Date: 11/10/2008 Instrument ID: VOCGCMS5 Analyst: 366 Analytic Batch: WG392986

EPA	ID:	TN00003	,

	Method Blank	
Analyte	CAS	PQL
Tetrachloroethene	127-18-4	<0.0010
• •		

Laboratory Control Sample (LCS)

Analyte	True		Recovery	Control		
	Value Found		_%	Limits Qualifiers		
Tetrachloroethene	0.0500	0.0523	105	67 - 135		

Laboratory Control Sample Duplicate (LCSD)

Analyte	True Value			Control Limits	Qualifiers
Tetrachloroethene	0.0500	0.0505	101	67 - 135	

Quality Control Summary

Ninyo and Moore - Las Vegas

L373794

Test: Volatile Organic Compounds by Method 8260B Matrix: Water - mg/L Project: 302556002 3761 N. Stephanie St Project No: 302556002 Login No: L373794 Sample Number: L373794-01, -02 Sample Date: 11/6/2008 Analysis Date: 11/8/2008 Instrument ID: VOCMS20 Analyst: 126 Analytic Batch: WG392914

EPA ID: TN00003

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Dichlorodifluoromethane	0.0500	0.0564	113	39 - 189	
Chloromethane	0.0500	0.0576	115	45 - 152	
Vinyl chloride	0.0500	0.0614	123	55 - 153	
Bromomethane	0.0500	0.0605	121	45 - 175	
Chloroethane	0.0500	0.0578	116	49 - 155	
Trichlorofluoromethane	0.0500	0.0559	112	54 - 156	
Acrolein	0.250	0.466	186	6 - 182	J4
1,1-Dichloroethene	0.0500	0.0544	109	60 - 130	
1,1,2-Trichloro-1,2,2-trifluoroethane	0.0500	0.0651	130	51 - 149	
Acetone	0.250	0.237	94.8	48 - 134	
Methylene Chloride	0.0500	0.0560	112	64 - 125	
Acrylonitrile	0.250	0.304	122	60 - 140	
trans-1,2-Dichloroethene	0.0500	0.0581	116	67 - 129	
Methyl tert-butyl ether	0.0500	0.0577	115	51 - 142	
1,1-Dichloroethane	0.0500	0.0570	114	67 - 133	
Di-isopropyl ether	0.0500	0.0606	121	63 - 139	
2,2-Dichloropropane	0.0500	0.0644	129	46 - 151	
cis-1,2-Dichloroethene	0.0500	0.0625	125	72 - 128	
2-Butanone (MEK)	0.250	0.276	111	53 - 132	
Chloroform	0.0500	0.0564	113	66 - 126	
1,1,1-Trichloroethane	0.0500	0.0562	112	67 - 137	
Carbon tetrachloride	0.0500	0.0520	104	64 - 141	
1,1-Dichloropropene	0.0500	0.0575	115	68 - 132	
Benzene	0.0500	0.0580	116	67 - 126	
1,2-Dichloroethane	0.0500	0.0549	110	63 - 137	
Trichloroethene	0.0500	0.0587	117	74 - 126	
1,2-Dichloropropane	0.0500	0.0590	118	74 - 122	
Dibromomethane	0.0500	0.0541	108	73 - 125	
Bromodichloromethane	0.0500	0.0570	114	68 - 133	
2-Chloroethyl vinyl ether	0.250	0.209	83.6	0 - 171	
cis-1,3-Dichloropropene	0.0500	0.0556	111	73 - 131	
4-Methyl-2-pentanone (MIBK)	0.250	0.262	105	60 - 142	
Toluene	0.0500	0.0524	105	72 - 122	
trans-1,3-Dichloropropene	0.0500	0.0469	93.9	66 - 137	
1,1,2-Trichloroethane	0.0500	0.0508	102	79 - 123	

Quality Control Summary

Ninyo and Moore - Las Vegas

Test: Volatile Organic Compounds by Method 8260B

L373794

Matrix:Water - mg/L Project:302556002 3761 N. Stephanie St Project No:302556002 Login No:L373794 Sample Number:L373794-01, -02 Sample Date:11/6/2008 Analysis Date:11/8/2008 Instrument ID:VOCMS20 Analyst:126 Analytic Batch:WG392914

EPA ID: TN00003

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Tetrachloroethene	0.0500	0.0518	104	67 - 135	
1,3-Dichloropropane	0.0500	0.0540	108	77 - 119	
Chlorodibromomethane	0.0500	0.0543	109	73 - 138	
1,2-Dibromoethane	0.0500	0.0547	109	75 - 126	
Chlorobenzene	0.0500	0.0548	110	77 - 125	
1,1,1,2-Tetrachloroethane	0.0500	0.0556	111	75 - 134	
Ethylbenzene	0.0500	0.0557	111	76 - 129	
m&p-Xylene	0.100	0.106	106	74 - 128	
o-Xylene	0.0500	0.0560	112	78 - 128	
Styrene	0.0500	0.0581	116	78 - 130	
Bromoform	0.0500	0.0568	114	60 - 139	
Isopropylbenzene	0.0500	0.0526	105	73 - 132	
Bromobenzene	0.0500	0.0518	104	76 - 123	
1,1,2,2-Tetrachloroethane	0.0500	0.0504	101	72 - 128	
1,2,3-Trichloropropane	0.0500	0.0495	99.0	68 - 130	
n-Propylbenzene	0.0500	0.0510	102	71 - 132	
2-Chlorotoluene	0.0500	0.0527	105	74 - 128	
4-Chlorotoluene	0.0500	0.0519	104	74 - 130	
1,3,5-Trimethylbenzene	0.0500	0.0532	106	73 - 134	
tert-Butylbenzene	0.0500	0.0527	105	72 - 134	
1,2,4-Trimethylbenzene	0.0500	0.0526	105	72 - 135	
sec-Butylbenzene	0.0500	0.0525	105	70 - 135	
1,3-Dichlorobenzene	0.0500	0.0532	106	73 - 131	
p-Isopropyltoluene	0.0500	0.0537	107	68 - 138	
1,4-Dichlorobenzene	0.0500	0.0480	96.1	70 - 121	
1,2,3-Trimethylbenzene	0.0500	0.0489	97.8	70 - 127	
1,2-Dichlorobenzene	0.0500	0.0500	99.9	75 - 122	
n-Butylbenzene	0.0500	0.0457	91.5	63 - 142	
1,2-Dibromo-3-Chloropropane	0.0500	0.0483	96.5	55 - 134	
1,2,4-Trichlorobenzene	0.0500	0.0480	96.1	65 - 137	
Hexachloro-1,3-butadiene	0.0500	0.0496	99.1	67 - 135	
Naphthalene	0.0500	0.0485	97.0	56 - 145	
1,2,3-Trichlorobenzene	0.0500	0.0482	96.4	63 - 138	

Quality Control Summary

Ninyo and Moore - Las Vegas

Test: Volatile Organic Compounds by Method 8260B

L373794

Matrix:Water - mg/L Project:302556002 3761 N. Stephanie St Project No:302556002 Login No:L373794 Sample Number:L373794-01, -02 Sample Date:11/6/2008 Analysis Date:11/8/2008 Instrument ID:VOCMS20 Analyst:126 Analytic Batch:WG392914

EPA ID: TN00003

Laboratory Control Sample Duplicate (LCSD)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Dichlorodifluoromethane	0.0500	0.0533	107	39 - 189	
Chloromethane	0.0500	0.0547	109	45 - 152	
Vinyl chloride	0.0500	0.0581	116	55 - 153	
Bromomethane	0.0500	0.0585	117	45 - 175	
Chloroethane	0.0500	0.0562	112	49 - 155	
Trichlorofluoromethane	0.0500	0.0546	109	54 - 156	
Acrolein	0.250	0.486	194	6 - 182	J4
1,1-Dichloroethene	0.0500	0.0536	107	60 - 130	
1,1,2-Trichloro-1,2,2-trifluoroethane	0.0500	0.0636	127	51 - 149	
Acetone	0.250	0.235	94.2	48 - 134	
Methylene Chloride	0.0500	0.0538	108	64 - 125	
Acrylonitrile	0.250	0.303	121	60 - 140	
trans-1,2-Dichloroethene	0.0500	0.0575	115	67 - 129	
Methyl tert-butyl ether	0.0500	0.0570	114	51 - 142	
1,1-Dichloroethane	0.0500	0.0569	114	67 - 133	
Di-isopropyl ether	0.0500	0.0611	122	63 - 139	
2,2-Dichloropropane	0.0500	0.0646	129	46 - 151	
cis-1,2-Dichloroethene	0.0500	0.0619	124	72 - 128	
2-Butanone (MEK)	0.250	0.278	111	53 - 132	
Chloroform	0.0500	0.0555	111	66 - 126	
1,1,1-Trichloroethane	0.0500	0.0552	110	67 - 137	
Carbon tetrachloride	0.0500	0.0509	102	64 - 141	
1,1-Dichloropropene	0.0500	0.0567	113	68 - 132	
Benzene	0.0500	0.0584	117	67 - 126	
1,2-Dichloroethane	0.0500	0.0548	110	63 - 137	
Trichloroethene	0.0500	0.0595	119	74 - 126	
1,2-Dichloropropane	0.0500	0.0586	117	74 - 122	
Dibromomethane	0.0500	0.0545	109	73 - 125	
Bromodichloromethane	0.0500	0.0576	115	68 - 133	
2-Chloroethyl vinyl ether	0.250	0.220	88.1	0 - 171	
cis-1,3-Dichloropropene	0.0500	0.0577	115	73 - 131	
4-Methyl-2-pentanone (MIBK)	0.250	0.272	109	60 - 142	
Toluene	0.0500	0.0546	109	72 - 122	
trans-1,3-Dichloropropene	0.0500	0.0487	97.4	66 - 137	
1,1,2-Trichloroethane	0.0500	0.0502	100	79 - 123	

Quality Control Summary

Ninyo and Moore - Las Vegas

Test: Volatile Organic Compounds by Method 8260B

L373794

Matrix:Water - mg/L Project:302556002 3761 N. Stephanie St Project No:302556002 Login No:L373794 Sample Number:L373794-01, -02 Sample Date:11/6/2008 Analysis Date:11/8/2008 Instrument ID:VOCMS20 Analyst:126 Analytic Batch:WG392914

EPA ID: TN00003

Laboratory Control Sample Duplicate (LCSD)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
			101		
Tetrachloroethene	0.0500	0.0503	101	67 - 135	
1,3-Dichloropropane	0.0500	0.0545	109	77 - 119	
Chlorodibromomethane	0.0500	0.0539	108	73 - 138	
1,2-Dibromoethane	0.0500	0.0534	107	75 - 126	
Chlorobenzene	0.0500	0.0540	108	77 - 125	
1,1,1,2-Tetrachloroethane	0.0500	0.0531	106	75 - 134	
Ethylbenzene	0.0500	0.0547	109	76 - 129	
m&p-Xylene	0.100	0.104	104	74 - 128	
o-Xylene	0.0500	0.0549	110	78 - 128	
Styrene	0.0500	0.0577	115	78 - 130	
Bromoform	0.0500	0.0545	109	60 - 139	
Isopropylbenzene	0.0500	0.0514	103	73 - 132	
Bromobenzene	0.0500	0.0500	100	76 - 123	
1,1,2,2-Tetrachloroethane	0.0500	0.0501	100	72 - 128	
1,2,3-Trichloropropane	0.0500	0.0484	96.7	68 - 130	
n-Propylbenzene	0.0500	0.0503	101	71 - 132	
2-Chlorotoluene	0.0500	0.0517	103	74 - 128	
4-Chlorotoluene	0.0500	0.0507	101	74 - 130	
1,3,5-Trimethylbenzene	0.0500	0.0516	103	73 - 134	
tert-Butylbenzene	0.0500	0.0517	103	72 - 134	
1,2,4-Trimethylbenzene	0.0500	0.0507	101	72 - 135	
sec-Butylbenzene	0.0500	0.0502	100	70 - 135	
1,3-Dichlorobenzene	0.0500	0.0518	104	73 - 131	
p-Isopropyltoluene	0.0500	0.0521	104	68 - 138	
1,4-Dichlorobenzene	0.0500	0.0484	96.7	70 - 121	
1,2,3-Trimethylbenzene	0.0500	0.0492	98.4	70 - 127	
1,2-Dichlorobenzene	0.0500	0.0504	101	75 - 122	
n-Butylbenzene	0.0500	0.0468	93.7	63 - 142	
1,2-Dibromo-3-Chloropropane	0.0500	0.0481	96.3	55 - 134	
1,2,4-Trichlorobenzene	0.0500	0.0478	95.6	65 - 137	
Hexachloro-1,3-butadiene	0.0500	0.0491	98.3	67 - 135	
Naphthalene	0.0500	0.0494	98.8	56 - 145	
1,2,3-Trichlorobenzene	0.0500	0.0492	98.4	63 - 138	

Quality Control Summary

Ninyo and Moore - Las Vegas

Test: Volatile Organic Compounds by Method 8260B

L373794

Matrix:Water - mg/L Project:302556002 3761 N. Stephanie St Project No:302556002 Login No:L373794 Sample Number:L373794-01, -02 Sample Date:11/6/2008 Analysis Date:11/8/2008 Instrument ID:VOCMS20 Analyst:126 Analytic Batch:WG392914

EPA ID: TN00003

Laboratory	Dibromofluoromethane		Toluene-d8		4-Bromo	fluorobenzene	Alternate Surrogate a,a,a-Trifluorotoluene	
Sample ID	ppb	% Rec	ppb % Rec ppb % Rec		% Rec	ppb	% Rec	
LCS WG392914	42.2	106	40.1	100	41.7	104	40.6	102
LCSD WG392914	41.1	103	40.7	102	41.0	102	41.6	104
MS WG392914	41.9	105	40.8	102	39.7	99.3	41.6	104
MSD WG392914	41.7	104	40.4	101	41.4	104	40.8	102
Blank WG392914	40.8	102	40.9	102	43.2	108	41.8	105
L373794-01	43.0	107	41.1	103	43.5	109	43.1	108
L373794-02	42.1	105	40.4	101	41.2	103	41.0	103
	Dibromofluoromethane			40 ppb	79 - 125			
	Toluene -	d8		40 ppb	87 - 114			
	4-Bromof	luorobenzene		40 ppb	75 - 128			
			Alterna	te Surrogate	1			
	a,a,a-Trif	a,a,a-Trifluorotoluene		40 ppb	84 - 114			

Surrogate Summary

Quality Control Summary

Ninyo and Moore - Las Vegas

Test: Volatile Organic Compounds by Method 8260B Matrix: Water - mg/L Project: 302556002 3761 N. Stephanie St Project No: 302556002 Login No: L373794 Sample Number: L373794-01 Sample Date: 11/6/2008 Analysis Date: 11/10/2008 Instrument ID: VOCGCMS5 Analyst: 366 Analytic Batch: WG392986

EPA ID: TN00003

L373794

Laboratory	Dibromofluoromethane		Toluene-d8		4-Bromo	fluorobenzene	Alternate Surrogate a,a,a-Trifluorotoluene	
Sample ID	ppb	% Rec	ppb	opb % Rec ppb % Re		% Rec	ppb	% Rec
LCS WG392986	39.9	99.9	38.4	95.9	40.2	101	40.2	100
LCSD WG392986	39.3	98.3	36.4	91.1	39.6	99.1	39.2	98.0
MS WG392986	40.5	101	38.0	95.0	40.5	101	39.7	99.3
MSD WG392986	40.2	100	36.7	91.8	37.0	92.5	40.0	100.0
Blank WG392986	37.9	94.8	38.9	97.2	39.3	98.2	40.2	100
L373794-01	38.8	97.0	38.7	96.6	39.5	98.6	39.7	99.2
	Dibromot	luoromethane		40 ppb	79 - 125			
	Toluene -	d8		40 ppb	87 - 114			
	4-Bromot	luorobenzene		40 ppb	75 - 128			
			Alterna	te Surrogate				
	a,a,a-Trif	luorotoluene		40 ppb	84 - 114			

Surrogate Summary

Quality Control Summary

Ninyo and Moore - Las Vegas

Test: Volatile Organic Compounds by Method 8260B

L373794

Matrix:Water - mg/L Project:302556002 3761 N. Stephanie St Project No:302556002 Login No:L373794 Sample Number:L373794-01, -02 Analysis Date:11/8/2008 Instrument ID:VOCMS20 Analytic Batch:WG392914

EPA ID: TN00003

Matrix Spike/Matrix Spike Duplicate

L373782-06

	Spike			%		%	Control	%	Control	
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier RPD	Limits Qual	lifier
Dichlorodifluoromethane	0.0500	0.0000	0.0600	120	0.0611	122	0-200	1.8	26	_
Chloromethane	0.0500	0.0000	0.0614	123	0.0610	122	10-174	0.6	28	
Vinyl chloride	0.0500	0.0000	0.0667	133	0.0670	134	0-179	0.3	26	
Bromomethane	0.0500	0.0000	0.0614	123	0.0628	126	0-191	2.3	35	
Chloroethane	0.0500	0.0000	0.0610	122	0.0632	126	4-176	3.6	27	
Trichlorofluoromethane	0.0500	0.0000	0.0621	124	0.0621	124	10-177	0.1	24	
Acrolein	0.250	0.0000	0.404	162	0.384	154	0-179	5.0	39	
1,1-Dichloroethene	0.0500	0.0000	0.0579	116	0.0581	116	10-162	0.5	23	
1,1,2-Trichloro-1,2,2-	0.0500	0.0000	0.0702	140	0.0706	141	14-168	0.6	24	
Acetone	0.250	0.0000	0.240	96.0	0.233	93.1	25-157	3.1	26	
Methylene Chloride	0.0500	0.0000	0.0549	110	0.0554	111	23-151	0.8	21	
Acrylonitrile	0.250	0.0000	0.315	126	0.316	126	37-162	0.3	24	
trans-1,2-Dichloroethene	0.0500	0.0000	0.0596	119	0.0603	121	11-160	1.2	23	
Methyl tert-butyl ether	0.0500	0.0000	0.0565	113	0.0568	114	24-167	0.6	22	
1,1-Dichloroethane	0.0500	0.0000	0.0587	117	0.0587	117	30-159	0.1	21	
Di-isopropyl ether	0.0500	0.0000	0.0602	120	0.0601	120	39-160	0.2	21	
2,2-Dichloropropane	0.0500	0.0000	0.0715	143	0.0713	143	14-158	0.4	23	
cis-1,2-Dichloroethene	0.0500	0.0000	0.0643	129	0.0642	128	29-156	0.1	22	
2-Butanone (MEK)	0.250	0.0000	0.292	117	0.296	118	32-151	1.3	26	
Chloroform	0.0500	0.0000	0.0568	114	0.0567	113	37-147	0.2	21	
1,1,1-Trichloroethane	0.0500	0.0000	0.0585	117	0.0594	119	31-161	1.5	23	
Carbon tetrachloride	0.0500	0.0000	0.0557	111	0.0550	110	22-168	1.3	24	
1,1-Dichloropropene	0.0500	0.0000	0.0598	120	0.0609	122	14-162	1.8	23	
Benzene	0.0500	0.0000	0.0598	120	0.0602	120	16-158	0.6	21	
1,2-Dichloroethane	0.0500	0.0000	0.0545	109	0.0543	109	29-167	0.3	21	
Trichloroethene	0.0500	0.0000	0.0595	119	0.0604	121	18-163	1.5	21	
1,2-Dichloropropane	0.0500	0.0000	0.0613	123	0.0606	121	39-148	1.2	20	
Dibromomethane	0.0500	0.0000	0.0548	110	0.0544	109	36-152	0.6	20	
Bromodichloromethane	0.0500	0.0000	0.0580	116	0.0576	115	45-147	0.8	20	
2-Chloroethyl vinyl ether	0.250	0.0000	0.0970	38.8	0.0167	6.7	0-175	141	75 J.	3
cis-1,3-Dichloropropene	0.0500	0.0000	0.0589	118	0.0579	116	35-148	1.7	21	
4-Methyl-2-pentanone	0.250	0.0000	0.285	114	0.278	111	40-160	2.6	28	
Toluene	0.0500	0.0003	0.0553	110	0.0557	111	22-152	0.6	22	
trans-1,3-Dichloropropene	0.0500	0.0005	0.0494	98.0	0.0491	97.3	33-153	0.7	22	
1,1,2-Trichloroethane	0.0500	0.0000	0.0481	96.1	0.0517	103	46-145	7.3	20	
Tetrachloroethene	0.0500	0.0000	0.0527	105	0.0548	110	13-157	3.9	24	
1,3-Dichloropropane	0.0500	0.0000	0.0513	103	0.0531	106	44-142	3.5	20	_

Quality Control Summary for client sample(s) WW1-GW-1, WW7-GW-1

Quality Control Summary

Ninyo and Moore - Las Vegas Test: Volatile Organic Compounds by Method 8260B

L373794

Matrix: Water - mg/L Project: 302556002 3761 N. Stephanie St Project No: 302556002 Login No:L373794 Sample Number: L373794-01, -02 Analysis Date: 11/8/2008 Instrument ID: VOCMS20 Analytic Batch: WG392914

EPA ID: TN00003

Matrix Spike/Matrix Spike Duplicate

L373782-06

	Spike			%		%	Control		Control
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier RPD	Limits Qualifier
Chlorodibromomethane	0.0500	0.0000	0.0511	102	0.0532	106	48-151	4.0	21
1,2-Dibromoethane	0.0500	0.0000	0.0523	105	0.0548	110	41-149	4.6	21
Chlorobenzene	0.0500	0.0000	0.0533	107	0.0559	112	33-148	4.7	22
1,1,1,2-Tetrachloroethane	0.0500	0.0000	0.0520	104	0.0542	108	45-152	4.2	21
Ethylbenzene	0.0500	0.0000	0.0540	108	0.0577	115	29-150	6.6	24
m&p-Xylene	0.100	0.0000	0.106	106	0.111	111	24-151	4.1	23
o-Xylene	0.0500	0.0000	0.0554	111	0.0576	115	32-151	4.0	23
Styrene	0.0500	0.0000	0.0576	115	0.0595	119	38-149	3.2	23
Bromoform	0.0500	0.0000	0.0538	108	0.0558	112	38-152	3.6	20
Isopropylbenzene	0.0500	0.0000	0.0525	105	0.0556	111	35-147	5.7	25
Bromobenzene	0.0500	0.0000	0.0489	97.8	0.0517	103	37-147	5.6	23
1,1,2,2-Tetrachloroethane	0.0500	0.0000	0.0514	103	0.0543	109	49-149	5.5	22
1,2,3-Trichloropropane	0.0500	0.0000	0.0465	93.0	0.0497	99.4	48-148	6.6	23
n-Propylbenzene	0.0500	0.0000	0.0518	104	0.0548	110	26-150	5.8	25
2-Chlorotoluene	0.0500	0.0000	0.0516	103	0.0547	109	35-147	6.0	24
4-Chlorotoluene	0.0500	0.0000	0.0514	103	0.0534	107	33-147	3.8	25
1,3,5-Trimethylbenzene	0.0500	0.0000	0.0522	104	0.0552	110	33-149	5.7	26
tert-Butylbenzene	0.0500	0.0000	0.0536	107	0.0564	113	36-149	5.1	26
1,2,4-Trimethylbenzene	0.0500	0.0000	0.0505	101	0.0542	108	29-153	7.2	27
sec-Butylbenzene	0.0500	0.0000	0.0521	104	0.0551	110	32-149	5.7	26
1,3-Dichlorobenzene	0.0500	0.0000	0.0529	106	0.0553	111	32-148	4.4	24
p-Isopropyltoluene	0.0500	0.0000	0.0539	108	0.0572	114	28-151	5.8	27
1,4-Dichlorobenzene	0.0500	0.0000	0.0504	101	0.0510	102	32-136	1.1	23
1,2,3-Trimethylbenzene	0.0500	0.0000	0.0498	99.6	0.0502	100	36-141	0.7	25
1,2-Dichlorobenzene	0.0500	0.0000	0.0510	102	0.0517	103	40-139	1.2	23
n-Butylbenzene	0.0500	0.0000	0.0511	102	0.0514	103	22-151	0.7	29
1,2-Dibromo-3-Chloropropane	0.0500	0.0000	0.0503	101	0.0499	99.7	37-148	0.8	27
1,2,4-Trichlorobenzene	0.0500	0.0000	0.0533	107	0.0528	106	27-142	1.1	30
Hexachloro-1,3-butadiene	0.0500	0.0000	0.0532	106	0.0532	106	28-144	0.0	33
Naphthalene	0.0500	0.0000	0.0500	100	0.0518	104	24-160	3.4	37
1,2,3-Trichlorobenzene	0.0500	0.0000	0.0508	102	0.0524	105	32-143	3.0	33

Quality Control Summary

Ninyo and Moore - Las Vegas

Test: Volatile Organic Compounds by Method 8260B

L373794

Matrix: Water - mg/L Project: 302556002 3761 N. Stephanie St Project No: 302556002 Login No: L373794 Sample Number: L373794-01, -02 Analysis Date: 11/8/2008 Instrument ID: VOCMS20 Analytic Batch: WG392914

EPA ID: TN00003

Laboratory Control Sample/ Laboratory Control Sample Duplicate

Analyte	Spike	LCS	% Rec	LCSD	% Rec	Control Limits Qu		Control Limits Qualifier
	0.0500					`		
Dichlorodifluoromethane	0.0500	0.0564	113	0.0533	107	39-189	5.7	24
Chloromethane	0.0500	0.0576	115	0.0547	109	45-152	5.2	20
Vinyl chloride	0.0500	0.0614	123	0.0581	116	55-153	5.6	20
Bromomethane	0.0500	0.0605	121	0.0585	117	45-175	3.3	20
Chloroethane	0.0500	0.0578	116	0.0562	112	49-155	2.8	20
Trichlorofluoromethane	0.0500	0.0559	112	0.0546	109	54-156	2.4	20
Acrolein	0.250	0.466	186	0.486	194	6-182 J4	4.2	39
1,1-Dichloroethene	0.0500	0.0544	109	0.0536	107	60-130	1.5	20
1,1,2-Trichloro-1,2,2-	0.0500	0.0651	130	0.0636	127	51-149	2.3	20
Acetone	0.250	0.237	94.8	0.235	94.2	48-134	0.7	20
Methylene Chloride	0.0500	0.0560	112	0.0538	108	64-125	4.0	20
Acrylonitrile	0.250	0.304	122	0.303	121	60-140	0.4	20
trans-1,2-Dichloroethene	0.0500	0.0581	116	0.0575	115	67-129	1.0	20
Methyl tert-butyl ether	0.0500	0.0577	115	0.0570	114	51-142	1.3	20
1,1-Dichloroethane	0.0500	0.0570	114	0.0569	114	67-133	0.2	20
Di-isopropyl ether	0.0500	0.0606	121	0.0611	122	63-139	0.9	20
2,2-Dichloropropane	0.0500	0.0644	129	0.0646	129	46-151	0.3	20
cis-1,2-Dichloroethene	0.0500	0.0625	125	0.0619	124	72-128	0.9	20
2-Butanone (MEK)	0.250	0.276	111	0.278	111	53-132	0.4	20
Chloroform	0.0500	0.0564	113	0.0555	111	66-126	1.6	20
1,1,1-Trichloroethane	0.0500	0.0562	112	0.0552	110	67-137	1.9	20
Carbon tetrachloride	0.0500	0.0520	104	0.0509	102	64-141	2.2	20
1,1-Dichloropropene	0.0500	0.0575	115	0.0567	113	68-132	1.3	20
Benzene	0.0500	0.0580	116	0.0584	117	67-126	0.7	20
1,2-Dichloroethane	0.0500	0.0549	110	0.0548	110	63-137	0.3	20
Trichloroethene	0.0500	0.0587	117	0.0595	119	74-126	1.3	20
1,2-Dichloropropane	0.0500	0.0590	118	0.0586	117	74-122	0.6	20
Dibromomethane	0.0500	0.0541	108	0.0545	109	73-125	0.8	20
Bromodichloromethane	0.0500	0.0570	114	0.0576	115	68-133	1.2	20
2-Chloroethyl vinyl ether	0.250	0.209	83.6	0.220	88.1	0-171	5.2	27
cis-1,3-Dichloropropene	0.0500	0.0556	111	0.0577	115	73-131	3.7	20
4-Methyl-2-pentanone	0.250	0.262	105	0.272	109	60-142	4.0	20
Toluene	0.0500	0.0524	105	0.0546	109	72-122	4.1	20
trans-1,3-Dichloropropene	0.0500	0.0469	93.9	0.0487	97.4	66-137	3.7	20
1,1,2-Trichloroethane	0.0500	0.0508	102	0.0502	100	79-123	1.2	20

Quality Control Summary

Ninyo and Moore - Las Vegas

Test: Volatile Organic Compounds by Method 8260B

L373794

Matrix:Water - mg/L Project:302556002 3761 N. Stephanie St Project No:302556002 Login No:L373794 Sample Number:L373794-01, -02 Analysis Date:11/8/2008 Instrument ID:VOCMS20 Analytic Batch:WG392914

EPA ID: TN00003

Laboratory Control Sample/ Laboratory Control Sample Duplicate

	Spike	X 66	%	*	%	Control	%	Control
Analyte		LCS	Rec	LCSD	Rec	Limits	Qualifier RPD	Limits Qualifier
Tetrachloroethene	0.0500	0.0518	104	0.0503	101	67-135	2.9	20
1,3-Dichloropropane	0.0500	0.0540	108	0.0545	109	77-119		20
Chlorodibromomethane	0.0500	0.0543	109	0.0539	108	73-138		20
1,2-Dibromoethane	0.0500	0.0547	109	0.0534	107	75-126	2.3	20
Chlorobenzene	0.0500	0.0548	110	0.0540	108	77-125	1.4	20
1,1,1,2-Tetrachloroethane	0.0500	0.0556	111	0.0531	106	75-134	4.6	20
Ethylbenzene	0.0500	0.0557	111	0.0547	109	76-129		20
m&p-Xylene	0.100	0.106	106	0.104	104	74-128		20
o-Xylene	0.0500	0.0560	112	0.0549	110	78-128		20
Styrene	0.0500	0.0581	116	0.0577	115	78-130	0.7	20
Bromoform	0.0500	0.0568	114	0.0545	109	60-139		20
Isopropylbenzene	0.0500	0.0526	105	0.0514	103	73-132		20
Bromobenzene	0.0500	0.0518	104	0.0500	100	76-123		20
1,1,2,2-Tetrachloroethane	0.0500	0.0504	101	0.0501	100	72-128	0.7	20
1,2,3-Trichloropropane	0.0500	0.0495	99.0	0.0484	96.7	68-130	2.3	20
n-Propylbenzene	0.0500	0.0510	102	0.0503	101	71-132		20
2-Chlorotoluene	0.0500	0.0527	105	0.0517	103	74-128		20
4-Chlorotoluene	0.0500	0.0519	104	0.0507	101	74-130		20
1,3,5-Trimethylbenzene	0.0500	0.0532	106	0.0516	103	73-134		20
tert-Butylbenzene	0.0500	0.0527	105	0.0517	103	72-134		20
1,2,4-Trimethylbenzene	0.0500	0.0526	105	0.0507	101	72-135	3.6	20
sec-Butylbenzene	0.0500	0.0525	105	0.0502	100	70-135		20
1,3-Dichlorobenzene	0.0500	0.0532	106	0.0518	104	73-131	2.7	20
p-Isopropyltoluene	0.0500	0.0537	107	0.0521	104	68-138		20
1,4-Dichlorobenzene	0.0500	0.0480	96.1	0.0484	96.7	70-121	0.6	20
1,2,3-Trimethylbenzene	0.0500	0.0489	97.8	0.0492	98.4	70-127	0.5	20
1,2-Dichlorobenzene	0.0500	0.0500	99.9	0.0504	101	75-122	0.9	20
n-Butylbenzene	0.0500	0.0457	91.5	0.0468	93.7	63-142	2.4	20
1,2-Dibromo-3-Chloropropane	0.0500	0.0483	96.5	0.0481	96.3	55-134	0.3	20
1,2,4-Trichlorobenzene	0.0500	0.0480	96.1	0.0478	95.6	65-137	0.5	20
Hexachloro-1,3-butadiene	0.0500	0.0496	99.1	0.0491	98.3	67-135	0.9	20
Naphthalene	0.0500	0.0485	97.0	0.0494	98.8	56-145	1.8	20
1,2,3-Trichlorobenzene	0.0500	0.0482	96.4	0.0492	98.4	63-138	2.1	20

Laboratory Control Sample/ Laboratory Control Sample Duplicate

	Spike		%		%	Control	%	Control
Analyte		LCS	Rec	LCSD	Rec	Limits	Qualifier RPD	Limits Qualifier
Tetrachloroethene	0.0500	0.0523	105	0.0505	101	67-135	3.5	20

Matrix Spike/Matrix Spike Duplicate

L373779-27

	Spike			%		%	Control	% Control
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier RPD Limits Qualifier
Tetrachloroethene	0.0500	0.0000	0.0363	72.7	0.0357	71.5	13-157	1.7 24

Analytic Batch:WG392986

Quality Control Summary

Ninyo and Moore - Las Vegas

Test: Volatile Organic Compounds by Method 8260B

L373794

Matrix: Water - mg/L Project: 302556002 3761 N. Stephanie St Project No:302556002 Login No:L373794 Sample Date:11/6/2008 Analysis Date: 11/8/2008 Instrument ID:VOCMS20 Analyst:126 Analytic Batch: WG392914

EPA ID: TN00003

Inte	ernal Stan	dard Re	esponse and	Retentio	on Time Sur	nmary		
FileID:1108_02.D			Date:11/8/20	008		Time	:3:56 PM	
	IS1		IS2		IS3		IS4	
	Response	RT	Response	RT	Response	RT	Response	RT
12 Hour Std	401354	5.95	623220	6.43	84751	8.68	379450	12.16
Upper Limit	802708	6.45	1246440	6.93	169502	9.18	758900	12.66
Lower Limit	200677	5.45	311610	5.93	42375.5	8.18	189725	11.66
Sample ID	Response	RT	Response	RT	Response	RT	Response	RT
Blank WG392914	374708	5.96	591435	6.43	78075	8.68	364709	12.16
L373794-01	344694	5.96	542758	6.43	72786	8.68	345321	12.16
L373794-02	340600	5.96	541253	6.43	73047	8.69	338772	12.16
LCS WG392914	398190	5.96	629677	6.43	83887	8.68	394061	12.16
LCSD WG392914	401072	5.96	624351	6.43	87059	8.69	390723	12.16
MS WG392914	397023	5.96	617147	6.43	88156	8.68	386631	12.16
MSD WG392914	386953	5.96	605100	6.43	82307	8.68	377401	12.16

ternal Standard Desnance and Detention Tim

Quality Control Summary

Ninyo and Moore - Las Vegas

Test: Volatile Organic Compounds by Method 8260B

L373794

Matrix: Water - mg/L Project: 302556002 3761 N. Stephanie St Project No:302556002 Login No:L373794 Sample Date:11/6/2008 Analysis Date: 11/10/2008 Instrument ID: VOCGCMS5 Analyst:366 Analytic Batch:WG392986

EPA ID: TN00003

Inte	ernal Stan	dard Re	sponse and	Retenti	on Time Sur	nmary		
FileID:1109_31.D			Date:11/9/20	008		Time	:9:05 PM	
	IS1		IS2		IS3		IS4	
	Response	RT	Response	RT	Response	RT	Response	RT
12 Hour Std	369527	5.38	582616	5.84	284762	7.52	166985	10.99
Upper Limit	739054	5.88	1165232	6.34	569524	8.02	333970	11.49
Lower Limit	184763.5	4.88	291308	5.34	142381	7.02	83492.5	10.49
Sample ID	Response	RT	Response	RT	Response	RT	Response	RT
Blank WG392986	319274	5.37	486966	5.83	243391	7.52	149602	10.99
L373794-01	325377	5.37	500515	5.83	250597	7.53	151871	11
LCS WG392986	358122	5.38	552830	5.84	265007	7.52	160222	10.99
LCSD WG392986	367006	5.37	581598	5.83	280828	7.53	166993	11
MS WG392986	367116	5.37	578459	5.84	270936	7.53	171175	11
MSD WG392986	336199	5.37	530723	5.84	258370	7.52	153805	11

Internal Standard Despanse and Detention Time St

Est. 1970

Ninyo and Moore - Las Vegas Mark Gray 6700 Paradise Rd., Suite E

Las Vegas, NV 89119

Quality	Assurance Level II	Report
	L373794	

January 12, 2009

Analyte 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2-Dibromo-3-Chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloropropane 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichloropropane 1,4-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane 2-Chlorotoluene 4-Chlorotoluene 4-Methyl-2-pentanone (MIBK) Acetone Acrylein Acrylein Bromodichloromethane Bromodorm Bromothane Carbon tetrachloride Chlorotofm Chloroform Chlorodifluoromethane Chlorodifluoromethane Ethylbenzene Bi-isopropylenzene Methyl tert-butyl ether Dichlorodifluoromethane Ethylbenzene Methyl tert-butyl ether Methylene Chloride Methyl tert-butyl ether Methylene Chloride Methyl tert-butyl ether Methylene Chloride Methylene Chlori	Result	Laboratory Blan Units	nk % Rec Limit	Batch Date Analy	yzec
1.1.1.2-Tetrachloroethane	< .001	ma/1		WG392914 11/08/08 1	18:4
1.1.1-Trichloroethane	< .00			WG392914 11/08/08 1	
1.1.2.2-Tetrachloroethane	< .001	mg/1		WG392914 11/08/08 1	
1,1,2,2 Trichloroethane	< .00	mg/l		WG392914 11/08/08 1	
1 1 2-Trichloro-1 2 2-trifluoroethane	2.00	mg/1		WG392914 11/08/08 1	
1, 1, 2-111CHIOTO-1, 2, 2-LIIIIuOroethane	2.00	mg/1		WG392914 11/00/00 1	10.4
1,1-Dichlensthene				WG392914 11/08/08 1	10:4
1,1-Dichloroethene	< .00.	. mg/l		WG392914 11/08/08 1	
1,1-Dichioropropene	< .00	mg/1		WG392914 11/08/08 1	
1, 2, 3-Trichlorobenzene	< .00	. mg/l		WG392914 11/08/08 1	
1,2,3-Trichloropropane	< .00	mg/l		WG392914 11/08/08 1	
1,2,3-Trimethylbenzene	< .00.	. mg/1		WG392914 11/08/08 1	
1,2,4-Trichlorobenzene	< .00	. mg/1		WG392914 11/08/08 1	
1,2,4-Trimethylbenzene	< .00:	. mg/1		WG392914 11/08/08 1	
1,2-Dibromo-3-Chloropropane	< .005	mg/l		WG392914 11/08/08 1	
1,2-Dibromoethane	< .001	mg/l		WG392914 11/08/08 1	18:4
1,2-Dichlorobenzene	< .001	. mg/l		WG392914 11/08/08 1	18:4
1,2-Dichloroethane	< .001	mg/l		WG392914 11/08/08 1	18:4
1,2-Dichloropropane	< .00	mg/l		WG392914 11/08/08 1	
1.3.5-Trimethylbenzene	< .001	mg/l		WG392914 11/08/08 1	18:4
1.3-Dichlorobenzene	< .001	mg/1		WG392914 11/08/08 1	
1.3-Dichloropropane	< .00	mg/1		WG392914 11/08/08 1	
1 A-Dichlorobenzene	2 .00			WG392914 11/08/08 1	
2 2 Dichleropropane	2.00				
2-Butanana (MEK)				WG392914 11/08/08 1	
2-Bulanone (MEK)	S .01	mg/1		WG392914 11/08/08 1	
2-Chloroethyl Vinyl ether	< .00	mg/1		WG392914 11/08/08 1	
2-Chlorotoluene	< .00	mg/1		WG392914 11/08/08 1	
4-Chlorotoluene	< .00.	mg/l		WG392914 11/08/08 1	
4-Methyl-2-pentanone (MIBK)	< .01	mg/l		WG392914 11/08/08 1	
Acetone	< .05	mg/l		WG392914 11/08/08 1	
Acrolein	< .05	mg/l		WG392914 11/08/08 1	
Acrylonitrile	< .01	mg/l		WG392914 11/08/08 1	
Benzene	< .001	mg/l		WG392914 11/08/08 1	18:4
Bromobenzene	< .001	mg/l		WG392914 11/08/08 1	18:4
Bromodichloromethane	< .001	mq/l		WG392914 11/08/08 1	18:4
Bromoform	< .001	mg/l		WG392914 11/08/08 1	18:4
Bromomethane	< .005	mg/l		WG392914 11/08/08 1	
Carbon tetrachloride	< .001	mg/l		WG392914 11/08/08 1	
Chlorobenzene	< .001	mg/1		WG392914 11/08/08 1	8:4
Chlorodibromomethane	< .001	mg/1		WG392914 11/08/08 1	8.4
Chloroethane	2 001	mg/1		WG392914 11/08/08 1	
Chloroform	2 .001	mg/1		WG392914 11/08/08 1	
Chloromothano	< .00.	mg/1			
chiolomethane	2.001	mg/1		WG392914 11/08/08 1	
cis-1,2-Dichloroethene	< .001	mg/1		WG392914 11/08/08 1	
cis-1,3-Dichloropropene	< .001	mg/1		WG392914 11/08/08 1	
Di-isopropyi etner	< .00.	mg/1		WG392914 11/08/08 1	
Dibromomethane	< .001	mg/l		WG392914 11/08/08 1	
Dichlorodifluoromethane	< .005	mg/l		WG392914 11/08/08 1	
Ethylbenzene	< .001	mg/l		WG392914 11/08/08 1	.8:4
Hexachloro-1,3-butadiene	< .001	mg/l		WG392914 11/08/08 1	
Isopropylbenzene	< .001	mg/l		WG392914 11/08/08 1	
Methyl tert-butyl ether	< .001	mg/l		WG392914 11/08/08 1	
Methylene Chloride	< .005	mg/l		WG392914 11/08/08 1	
n-Butylbenzene	< .001	mg/1		WG392914 11/08/08 1	
-Propylbenzene	< .001	mg/1		WG392914 11/08/08 1	
Nanhthalana	2 .001	mg/1			
aphinatene	005	mg/1		WG392914 11/08/08 1	
	< .001	mg/1		WG392914 11/08/08 1	
sec-Butyldenzene	< .001	mg/1 mg/1 mg/1 mg/1 mg/1		WG392914 11/08/08 1	
Styrene	< .001	mg/1		WG392914 11/08/08 1	.8:4
* Performance of this Analyte is	outside	or established ci	iteria.		

For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

Page 10 of 18

Est. 1970

Ninyo and Moore - Las Vegas Mark Gray 6700 Paradise Rd., Suite E

Las Vegas, NV 89119

Quality Assurance Report Level II L373794

January 12, 2009

		Laborat	ory Bla	nk			
Analyte	Result	U	Jnit <u>s</u>	% Rec	Limit	Batch Dat	e Analyzed
tert-Butylbenzene Tetrachloroethene Toluene trans-1,2-Dichloroethene trans-1,3-Dichloropropene Trichloroethene Trichlorofluoromethane Vinyl chloride Xylenes, Total 4-Bromofluorobenzene Dibromofluoromethane Toluene-d8 a,a,a-Trifluorotoluene	< .001 < .001 < .005 < .001 < .001 < .005 < .001 < .003	n n n n n 8 8 8	ng/l ng/l ng/l ng/l ng/l ng/l ng/l ng/l	107.9 102.0 102.4 104.6	75-128 79-125 87-114 84-114	WG392914 11/ WG392914 11/	08/08 18:44 08/08 18:44
Tetrachloroethene 4-Bromofluorobenzene Dibromofluoromethane Toluene-d8 a,a,a-Trifluorotoluene	< .001	୫ ୫ ୫	ng/l k Rec. k Rec. k Rec. k Rec.	98.20 94.83 97.15 100.4	75-128 79-125 87-114 84-114	WG392986 11/ WG392986 11/ WG392986 11/ WG392986 11/ WG392986 11/	10/08 00:00 10/08 00:00 10/08 00:00
Corrosivity	7.20					WG392860 11/	LO/08 16:13
Reactive Sulf.(SW846 7.3.4.1)	< 25	n	ng/1			WG393783 11/	<u>14/08 10:</u> 00
		Dupl	icate				
Analyte	Units	Result	_Duplic	ate RPD	Limit	Ref Samp	Batch
Corrosivity		7.60	7.40	2.6	7 20	L373794-0	3 WG392860
Flashpoint	deg F	0.00	0.00	0.0	0 20	L373445-0	1 WG393357
Reactive CN (SW846 7.3.3.2)	mg/l	0.00	0.00	0.0	0 20	L373794-0	3 WG393785
Reactive Sulf. (SW846 7.3.4.1)	_mg/1	0.00	0.00	0.0	0 20	L373794-0	<u>3 WG3937</u> 83
	Labo	ratory C	Control	Sample			
Analyte	Units	Known	n Val	Result	% Rec	<u>Limit</u>	Batch
<pre>1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroptoene 1,2,3-Trichlorobenzene 1,2,3-Trichloroptopane 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene</pre>	<pre>mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1</pre>	.05 .05 .05 .05 .05 .05 .05 .05 .05 .05		0.0556 0.0562 0.0504 0.0651 0.0570 0.0544 0.0575 0.0482 0.0489 0.0489 0.0483	111. 112. 101. 102. 130. 114. 105. 96.4 97.8 96.5) 68-130 3 70-127 L 65-137 72-135	WG392914 WG392914 WG392914 WG392914 WG392914 WG392914 WG392914 WG392914 WG392914 WG392914 WG392914 WG392914 WG392914 WG392914
* Performance of this Analyte is a For additional information, plea	outside o ase see A	f establ	ished c t A 'Li	riteria. st of Ana	lvtes with	n OC Oualifie	cs.'

For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

Page 11 of 18

Est. 1970

Ninyo and Moore - Las Vegas Mark Gray 6700 Paradise Rd., Suite E

Las Vegas, NV 89119


Quality Assurance Report Level II L373794

January 12, 2009

Analyte	Labo Units	ratory Control Known Val	l Sample Result	% Rec	Limit	Batch
1,2-Dibromoethane	mg/l	.05	0.0547	109.	75-126	WG39291
1,2-Dichlorobenzene	mg/l	.05	0.0500	99.9	75-122	WG39291
1,2-Dichloroethane	mg/l	.05	0.0549	110.	63-137	WG39291
1,2-Dichloropropane	mg/l	.05	0.0590	118.	74-122	WG39291
1,3,5-Trimethylbenzene	mg/l	.05	0.0532	106.	73-134	WG39291
1,3-Dichlorobenzene	mg/l	.05	0.0532	106.	73-131	WG39291
1,3-Dichloropropane	mg/l	.05	0.0540	108.	77-119	WG39291
1,4-Dichlorobenzene	mg/l	.05	0.0480	96.1	70-121	WG39291
2,2-Dichloropropane	mg/l	.05	0.0644	129.	46-151	WG39291
2-Butanone (MEK)	mg/l	.25	0.276	111.	53-132	WG39291
2-Chloroethyl vinyl ether	mg/l	.25	0.209	83.6	0-171	WG39291
2-Chlorotoluene	mg/l	.05	0.0527	105.	74-128	WG39291
4-Chlorotoluene	mg/l	.05	0.0519	104.	74-130	WG39291
4-Methyl-2-pentanone (MIBK)	mg/l	.25	0.262	105.	60-142	WG39291
Acetone	mg/l	.25	0.237	94.8	48-134	WG39291
Acrolein	mg/l	.25	0.466	186.*	6-182	WG39291
Acrylonitrile	mg/l	.25	0.304	122.	60-140	WG39291
Benzene	mg/l	.05	0.0580	116.	67-126	WG39291
Bromobenzene	mg/l	.05	0.0518	104.	76-123	WG39291
Bromodichloromethane	mg/l	.05	0.0570	114.	68-133	WG39291
Bromoform	mg/l	.05	0.0568	114.	60-139	WG39291
Bromomethane	mg/l	.05	0.0605	121.	45-175	WG39291
Carbon tetrachloride	mg/l	.05	0.0520	104.	64-141	WG39291
Chlorobenzene	mg/l	.05	0.0548	110.	77-125	WG39291
Chlorodibromomethane	mg/l	.05	0.0543	109.	73-138	WG39291
Chloroethane	mg/l	.05	0.0578	116.	49-155	WG39291
Chloroform	mg/l	.05	0.0564	113.	66-126	WG39291
Chloromethane	mg/l	.05	0.0576	115.	45-152	WG39291
cis-1,2-Dichloroethene	mg/l	.05	0.0625	125.	72-128	WG39291
cis-1,3-Dichloropropene	mg/l	.05	0.0556	111.	73-131	WG39291
Di-isopropyl ether	mg/l	.05	0.0606	121.	63-139	WG39291
Dibromomethane	mg/l	.05	0.0541	108.	73-125	WG39291 WG39291
Dichlorodifluoromethane	mg/l	.05	0.0564	113.	39-189	WG39291
	mg/l	.05	0.0557	111.	76-129	WG39291
Ethylbenzene		.05	0.0496	99.1	67-135	WG39291
Hexachloro-1,3-butadiene	mg/l mg/l	.05	0.0526	105.	73-132	WG39291 WG39291
Isopropylbenzene	mg/l	.05	0.0577	115.	51-142	WG39291
Methyl tert-butyl ether		.05	0.0560	112.	64-125	WG39291
Methylene Chloride	mg/l	.05	0.0457	91.5	63-142	WG39291
n-Butylbenzene	mg/l		0.0510		71-132	WG39291
n-Propylbenzene	mg/l	.05 .05	0.0485	102. 97.0	56-145	WG39291 WG39291
Naphthalene	mg/l	.05	0.0537	107.		
p-Isopropyltoluene	mg/l			107.	68-138	WG39291
sec-Butylbenzene	mg/l	.05	0.0525	105.	70-135	WG39291
Styrene	mg/l	.05	0.0581	116.	78-130	WG39291
tert-Butylbenzene	mg/l	.05	0.0527	105.	72-134	WG39291
Tetrachloroethene	mg/l	.05	0.0518	104.	67-135	WG39291
Foluene	mg/l	.05	0.0524	105.	72-122	WG39291
trans-1,2-Dichloroethene	mg/l	.05	0.0581	116.	67-129	WG39291
trans-1,3-Dichloropropene	mg/l	.05	0.0469	,93.9	66-137	WG39291
frichloroethene	mg/l	.05	0.0587	117.	74-126	WG39291
frichlorofluoromethane	mg/l	.05	0.0559	112.	54-156	WG39291
/inyl chloride	mg/l	.05	0.0614	123.	55-153	WG39291
(ylenes, Total	mg/l	.15	0.162	108.	75-128	WG39291
-Bromofluorobenzene				104.1	75-128	WG39291
Dibromofluoromethane				105.5	79-125	WG39291
Toluene-d8				100.3	87-114	WG39291
a,a,a-Trifluorotoluene				101.6	84-114	WG39291
 Performance of this Analyt For additional information 	e is outside o , please see A	f established ttachment A 'I	criteria. List of Analy	vtes with O	C Oualifier	s.'

For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.

Page 12 of 18

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Ninyo and Moore - Las Vegas Mark Gray 6700 Paradise Rd., Suite E

Las Vegas, NV 89119

3no1...+o

Quality Assurance Report Level II L373794


January 12, 2009

		ratory Contro				
Analyte	Units	Known Val	Result	<u> %</u> Rec	Limit	Batch
Tetrachloroethene 4-Bromofluorobenzene Dibromofluoromethane Toluene-d8 a,a,a-Trifluorotoluene	mg/l	.05	0.0523	105. 100.6 99.85 95.88 100.5	67-135 75-128 79-125 87-114 84-114	WG392986 WG392986 WG392986 WG392986 WG392986
Corrosivity		7.42	7.40	99.7	97.19-102	WG392860
Flashpoint	deg F	82	81.0	98.8	96-103	WG393357
Reactive Sulf.(SW846 7.3.4.1)	mg/l	100	96.0	96.0	70-130	WG393783

Laboratory Control Sample Duplicate

Analyte	Units	Result_	Ref	<u>%Rec</u>	Limit	RPD	Limít	Batch
1,1,1,2-Tetrachloroethane	mg/1	0.053	0.055	106	75-134	4.58	20	WG392914
1,1,1-Trichloroethane	mg/1	0.055	0.055		67-137	4.58	20	WG392914 WG392914
1,1,2,2-Tetrachloroethane	mg/l	0.050	0.050		72-128	0.673		WG392914 WG392914
1,1,2-Trichloroethane	mg/1	0.050	0.050		79-123	1.22	20	WG392914 WG392914
1,1,2-Trichloro-1,2,2-trifluoroethane		0.063	0.065		51-149	2.32	20	WG392914 WG392914
1,1-Dichloroethane		0.055	0.005		67-133	0.199		WG392914
1,1-Dichloroethene	mg/l mg/l	0.053	0.054		60-130	1.48	20	WG392914 WG392914
1,1-Dichloropropene		0.055	0.054		68-132	1.40	20	WG392914 WG392914
1,2,3-Trichlorobenzene	mg/1	0.038	0.048		63-132	2.05	20	WG392914
	mg/1	0.049	0.048		68-130	2.05	20	
1,2,3-Trichloropropane	mg/1	0.048	0.049		70-127	2.28		WG392914
1,2,3-Trimethylbenzene	mg/1		0.048		65-137	0.521		WG392914
1,2,4-Trichlorobenzene	mg/1	0.047	0.048			3.64		WG392914
1,2,4-Trimethylbenzene	mg/1	0.050			72-135			WG392914
1,2-Dibromo-3-Chloropropane	mg/1	0.048	0.048		55-134	0.275		WG392914
1,2-Dibromoethane	mg/1	0.053	0.054		75-126	2.34	20	WG392914
1,2-Dichlorobenzene	mg/l	0.050	0.050		75-122	0.930		WG392914
1,2-Dichloroethane	mg/1	0.054	0.054		63-137	0.262		WG392914
1,2-Dichloropropane	mg/1	0.058	0.059		74-122	0.594		WG392914
1,3,5-Trimethylbenzene	mg/l	0.051	0.053		73-134	2.95	20	WG392914
1,3-Dichlorobenzene	mg/1	0.051	0.053		73-131	2.66	20	WG392914
1,3-Dichloropropane	mg/1	0.054	0.054		77-119	0.946		WG392914
1,4-Dichlorobenzene	mg/l	0.048	0.048		70-121	0.639		WG392914
2,2-Dichloropropane	mg/l	0.064	0.064		46-151	0.256		WG392914
2-Butanone (MEK)	mg/1	0.278	0.276		53-132	0.416		WG392914
2-Chloroethyl vinyl ether	mg/l	0.220	0.209		0-171	5.22	27	WG392914
2-Chlorotoluene	mg/1	0.051	0.052		74-128	1.95	20	WG392914
4-Chlorotoluene	mg/l	0.050	0.051		74-130	2.27	20	WG392914
4-Methyl-2-pentanone (MIBK)	mg/1	0.272	0.262		60-142	3.99	20	WG392914
Acetone	mg/l	0.235	0.237		48-134	0.667		WG392914
Acrolein	mg/1	0.486	0.466		6-182	4.20	39	WG392914
Acrylonitrile	mg/l	0.303	0.304		60-140	0.401		WG392914
Benzene	mg/1	0.058	0.058		67-126	0.667		WG392914
Bromobenzene	mg/1	0.050	0.051		76-123	3.59	20	WG392914
Bromodichloromethane	mg/l	0.057	0.057		68-133	1.18	20	WG392914
Bromoform	mg/l	0.054	0.056		60-139	4.14	20	WG392914
Bromomethane	mg/l	0.058	0.060		45-175	3.31	20	WG392914
Carbon tetrachloride	mg/l	0.050	0.052		64-141	2.16	20	WG392914
Chlorobenzene	mg/1	0.054	0.054		77-125	1.40	20	WG392914
Chlorodibromomethane	mg/1	0.053	0.054		73-138	0.733	20	WG392914
* Performance of this Analyte is								
For additional information, pl	ease see	Attachme	ent A 'L	ist of	Analytes wi	ith QC Q	ualifi	ers.'

Page 13 of 18

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859 Tax I.D. 62-0814289

Est. 1970

Ninyo and Moore - Las Vegas Mark Gray 6700 Paradise Rd., Suite E

Las Vegas, NV 89119

Quality Assurance Report Level II L373794

January 12, 2009

Analyte		ory Cont: Result		le Duplio %Rec	cate Limit	RPD	Limit	Batch
Analyte Chloroethane Chloroform Chloromethane cis-1,2-Dichloroethene cis-1,3-Dichloropropene Di-isopropyl ether Dibromomethane Dichlorodifluoromethane Ethylbenzene Hexachloro-1,3-butadiene Isopropylbenzene Methyl tert-butyl ether Methylene Chloride n-Butylbenzene n-Propylbenzene Naphthalene p-Isopropyltoluene sec-Butylbenzene Styrene tert-Butylbenzene Tetrachloroethene Toluene trans-1,2-Dichloroethene trans-1,3-Dichloropropene Trichloroethene Vinyl chloride	Units mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	Result 0.056 0.055 0.054 0.061 0.057 0.061 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.055 0	Ref 0.057 0.056 0.057 0.062 0.062 0.055 0.060 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.051 0.052 0.052 0.052 0.052 0.055 0.	%Rec 112. 111. 109. 124. 115. 122. 109. 107. 109. 103. 114. 108. 94.0 101. 99.0 104. 100. 115. 103. 101. 199.0 104. 100. 115. 103. 101. 109. 115. 97.0 119. 109.		RPD 2.81 1.55 5.19 0.821 5.66 1.868 2.27 1.31 3.96 2.40 1.47 1.83 3.14 4.53 0.710 1.98 2.94 4.087 3.65 1.28 2.39 5.55 5.66	20 20 20 20 20 20 20 20 20 20 20 20 20 2	WG392914 WG392914
Xylenes, Total 4-Bromofluorobenzene Dibromofluoromethane Toluene-d8 a,a,a-Trifluorotoluene	mg/l	0.159	0.102	102.5 102.6 101.7 103.9	75-128 75-128 79-125 87-114 84-114	1.05	20	WG392914 WG392914 WG392914 WG392914 WG392914 WG392914
Tetrachloroethene 4-Bromofluorobenzene Dibromofluoromethane Toluene-d8 a,a,a-Trifluorotoluene	mg/l	0.050	0.052		67-135 75-128 79-125 87-114 84-114	3.46	20	WG392986 WG392986 WG392986 WG392986 WG392986 WG392986
Corrosivity		7.50	7.40	101.	97.19-1	1.34	20	WG392860
Flashpoint	deg F	83.0	81.0	101.	96-103	2.44	7	WG393357
Reactive Sulf.(SW846 7.3.4.1)	mg/l	96.0	96.0	96.0	70-130	0.00	20	WG393783
Analyte	Units	Matı MS <u>Re</u> s	ix Spik Ref Res		Rec Limi	it Ref	Samp	Batch
<pre>1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane 1,1-Dichloroethane * Performance of this Analyte is</pre>	mg/l mg/l mg/l mg/l mg/l mg/l	0.052 0.058 0.051 0.048 0.070 0.058	$\begin{array}{c} 0.00\\$.05 140 .05 117	7. 31-1 3. 49-1 6.1 46-1 0. 14-1 7. 30-1	L61 L37 L49 L37 L45 L37 L68 L37	3782-00 3782-00 3782-00 3782-00 3782-00 3782-00 3782-00	6 WG39291 6 WG39291 6 WG39291 6 WG39291 6 WG39291

1,1,2-Trichloro-1,2,2-trifluoroethane mg/l 0.070 0.00 .05 140. 14-168 L373782-06 Wd
1,1-Dichloroethane mg/l 0.058 0.00 .05 117. 30-159 L373782-06 Wd
* Performance of this Analyte is outside of established criteria.
For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

Page 14 of 18

Ninyo and Moore - Las Vegas Mark Gray 6700 Paradise Rd., Suite E

Las Vegas, NV 89119

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Quality Assurance Report Level II

L373794

January 12, 2009

1.1-Dichloroethene mg/l 0.057 0.00 .05 116. 10-162 L373782-06 WG 1.2,3-Trichloropergene mg/l 0.050 0.00 .05 120. 14-162 L373782-06 WG 1.2,3-Trichloropergene mg/l 0.050 0.00 .05 102. 24-143 L373782-06 WG 1.2,3-Trichloropergene mg/l 0.053 0.00 .05 107. 27-142 L373782-06 WG 1.2,4-Trinethylbenzene mg/l 0.050 0.00 .05 101. 27-142 L373782-06 WG 1.2-Dichlorobertane mg/l 0.051 0.00 .05 101. 27-142 L373782-06 WG 1.2-Dichlorobertane mg/l 0.051 0.00 .05 102. 417.48 L373782-06 WG 1.2-Dichlorobertane mg/l 0.051 0.00 .05 101. 37-148 L373782-06 WG 1.2-Dichlorobertane mg/l 0.051 0.00 .51<									
1/1-Dichloroberzene mg/1 0.059 0.00 .05 120. 14-162 L373782-06 WGG 1/2,3-Trichloroberzene mg/1 0.046 0.00 .05 102. 32-133 L373782-06 WGG 1/2,3-Trichloroberzene mg/1 0.048 0.00 .05 93. 0.48-148 L373782-06 WGG 1/2,4-Trichloroberzene mg/1 0.050 0.00 .05 101. 27-145 L373782-06 WGG 1/2-0161Loroberzene mg/1 0.051 0.00 .05 101. 27-148 L373782-06 WGG 1/2-0161Loroberzene mg/1 0.051 0.00 .05 102. 41-149 L373782-06 WGG 1/2-0161Loroberzene mg/1 0.051 0.00 .05 102. 41-1373782-06 WGG 1/2-0161Loroberzene mg/1 0.052 0.00 .05 103. 34-149 L373782-06 WGG 1/2-2016Loroberzene mg/1 0.051 0.00 .05 103. 34-149 L373782-06 WGG 1/2-2016Loroberzene	Analyte	Units				% Rec	Limit	Ref Samp	Batch
1/2,3-Trichlorobenzene mg/1 0.050 0.00 .05 32.13 1373782-06 WGG 1/2,3-Trimethylbenzene mg/1 0.049 0.00 .05 93.0 48-148 1373782-06 WGG 1/2,4-Trimethylbenzene mg/1 0.053 0.00 .05 101. 29-158 1373782-06 WGG 1/2.4-Intenthylbenzene mg/1 0.050 0.00 .05 101. 29-167 1373782-06 WGG 1/2.2-Dibloroberbane mg/1 0.051 0.00 .05 102. 40-139 1373782-06 WGG 1/2.2-Dibloroberbane mg/1 0.051 0.00 .05 102. 40-139 1373782-06 WGG 1/3.5-Trithethylbenzene mg/1 0.051 0.00 .05 104. 33-149 1373782-06 WGG 1/3.5-Trithethylbenzene mg/1 0.051 0.00 .05 104. 33-149 1373782-06 WGG 1/3.5-Trithethylbenzene mg/1 0.051 0.00 .05 103. 34-142 1373782-06 WGG 1/3.5-Trithorobenzene	1,1-Dichloroethene	mg/l							WG392914
1/2/3-Trichloropropane mg/l 0.046 0.00 .05 93.0 48-148 L373782-06 WGG 1/2/4-Trichlorobenzene mg/l 0.053 0.00 .05 19.6 66-141 L373782-06 WGG 1/2/4-Trichlorobenzene mg/l 0.050 0.00 .05 101. 27-141 L373782-06 WGG 1/2-0hbromo-3-Chloropropane mg/l 0.051 0.00 .05 101. 37-148 L373782-06 WGG 1/2-0hbromo-3-Chloropropane mg/l 0.051 0.00 .05 101. 37-148 L373782-06 WGG 1/2-0bchloropropane mg/l 0.052 0.00 .05 104. 33-149 L373782-06 WGG 1/3-151chloropropane mg/l 0.051 0.00 .05 104. 33-149 L373782-06 WGG 2/2-151chloropropane mg/l 0.051 0.00 .05 104. 33-149 L373782-06 WGG 2/2-151chloropropane mg/l 0.051 0.00 .05 103. 44-142 L373782-06 WGG <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>WG39291</td></t<>									WG39291
1/2/3-Trimethylbenzene mg/l 0.049 0.00 05 36-141 J373782-06 WGG 1/2/4-Trimethylbenzene mg/l 0.050 0.00 05 101. 29-153 J373782-06 WGG 1/2-0b1romoethane mg/l 0.050 0.00 05 101. 37-148 J373782-06 WGG 1/2-Dibromoethane mg/l 0.051 0.00 05 101. 37-148 J373782-06 WGG 1/2-Dichlorobenzene mg/l 0.051 0.00 05 102. 40-139 L373782-06 WGG 1/2-Dichlorobenzene mg/l 0.051 0.00 05 103. 31-149 L373782-06 WGG 1/3-Dichlorobenzene mg/l 0.051 0.00 05 103. 44-142 J373782-06 WGG 2/2-Dichlorobropane mg/l 0.051 0.00 05 103. 44-142 J373782-06 WGG 2/2-Dichlorobropane mg/l 0.051 0.00 05 13.3 13-1373782-06 WGG 2/2-Dichlorobropane mg/l 0.051	1,2,3-Trichlorobenzene	mg/l							WG392914
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,2,3-Trichloropropane	mg/l					48 - 148		WG39291
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,2,3-Trimethylbenzene								WG39291
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,2,4-Trichlorobenzene				.05				WG392914
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									WG392914
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									WG392914
1/2 - Dichlorosthane mg/1 0.054 0.00 0.05 10.9. 29-167 L373782-06 WGG 1/2 - Dichlorospropane mg/1 0.052 0.00 0.5 10.4. 33-149 L373782-06 WGG 1/3 - Dichlorobenzene mg/1 0.052 0.00 0.5 10.4. L373782-06 WGG 1/4 - Dichlorobenzene mg/1 0.051 0.00 0.5 10.3. 44-142 L373782-06 WGG 2/2 - Dichloropropane mg/1 0.071 0.00 0.5 10.3. 44-142 L373782-06 WGG 2/2 - Chlorocthyl winyl ether mg/1 0.071 0.00 0.5 10.3. 35-147 L373782-06 WGG 2/2 - Chlorocthyl winyl ether mg/1 0.051 0.00 .55 10.3. 35-147 L373782-06 WGG 2/2 - Chlorocthyl winyl ether mg/1 0.051 0.00 .25 11.4 40-16 L373782-06 WGG 2/2 - Chlorocthuene mg/1 0.280 0.00 .25 14.7 <									WG39291
1/2 - Dichloropropane mg/1 0.061 0.00 0.5 12.3. 39-148 L373782-06 WGG 1/3 - Dichlorobrazene mg/1 0.052 0.00 0.5 106. 32-148 L373782-06 WGG 1/3 - Dichlorobropane mg/1 0.051 0.00 0.5 106. 32-148 L373782-06 WGG 2/2 - Dichlorobropane mg/1 0.051 0.00 0.5 101. 32-136 L373782-06 WGG 2/2 - Dichlorobropane mg/1 0.021 0.00 0.5 101. 32-136 L373782-06 WGG 2/2 - Dichlorobropane mg/1 0.0297 0.00 2.5 117. 32-151 L373782-06 WGG 2/2 - Chlorobluene mg/1 0.051 0.00 0.5 103. 33-147 L373782-06 WGG Acctore mg/1 0.240 0.00 32 144. 40-160 L373782-06 WGG Benzene mg/1 0.424 0.003 2.5 162. 0.173782-06 WGG Bromobazene mg/1 0.048								L3/3/02-00 т 272702-06	WG392914 WG392914
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.05				WG392914
1,3-Dichloroběnzene mg/1 0.052 0.00 0.55 106. 32-148 L373782-06 WGZ 1,3-Dichloropropane mg/1 0.051 0.00 .05 101. 32-136 L373782-06 WGZ 2,2-Dichloropropane mg/1 0.071 0.00 .05 143. 14-158 L373782-06 WGZ 2-Chlorotoluene mg/1 0.091 0.05 103. 35-147 L373782-06 WGZ 2-Chlorotoluene mg/1 0.051 0.00 .05 103. 35-147 L373782-06 WGZ 4-Methyl-2-pentanone (MIBK) mg/1 0.245 0.00 .25 114. 40-160 L373782-06 WGZ Acrolein mg/1 0.404 0.003 25 147. 1373782-06 WGZ Bromobenzene mg/1 0.046 0.00 25 162. 377147 L373782-06 WGZ Bromobenzene mg/1 0.058 0.00 05 18.8 15.1373782-06 WGZ<					.05				WG39291
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							32-149		WG392914
1/4-Dichlorobenžene mg/1 0.050 0.00 0.5 101. 32-136 L373782-06 WG 2.2-Dichloropropane mg/1 0.071 0.00 0.5 114-158 L373782-06 WG 2-chloroctoluene mg/1 0.029 0.00 .25 117. 32-151 L373782-06 WG 2-chloroctoluene mg/1 0.051 0.00 .05 103. .35-147 L373782-06 WG 4-Methyl-2-pentanone (MIBK) mg/1 0.051 0.00 .25 114. 40-160 L373782-06 WG Acetone mg/1 0.404 0.00 .25 124. -0161 L373782-06 WG Acetone mg/1 0.404 0.00 .25 124. -0161 L373782-06 WG Benzene mg/1 0.059 0.00 .5 126. .719 L373782-06 WG Bromodichloromethane mg/1 0.053 0.00 .5 120. 16-158 L373782					.05		44-142		WG392914
2/2-Dichloropropane mg/1 0.071 0.00 .05 143. 14-158 L373782-06 WG 2-ebutanone (MEK) mg/1 0.097 0.00 .25 38.8 0-175 L373782-06 WG 2-chlorotoluene mg/1 0.051 0.00 .25 38.8 0-175 L373782-06 WG 4-Chlorotoluene mg/1 0.051 0.00 .05 103. .35-147 L373782-06 WG 4-Methyl-2-pentanone (MIBK) mg/1 0.285 0.00 .25 114. 40-160 L373782-06 WG Acetone mg/1 0.404 0.00 .25 162. -179 L373782-06 WG Benzene mg/1 0.059 0.00 .25 126. .7-147 L373782-06 WG Bromodichloromethane mg/1 0.059 0.00 .05 110. 16-158 L373782-06 WG Bromodichloromethane mg/1 0.058 0.00 .05 117. 337482-06 WG Bromodoithloromethane mg/1 0.051 0.00 <td></td> <td></td> <td></td> <td></td> <td>05</td> <td></td> <td></td> <td></td> <td>WG392914</td>					05				WG392914
2-Eutanone (MEK) mg/l 0.292 0.00 .25 117. 32-151 L373782-06 WGS 2-Chlorotoluene mg/l 0.051 0.00 .05 103. 35-147 L373782-06 WGS 4-Chlorotoluene mg/l 0.051 0.00 .05 103. 35-147 L373782-06 WGS 4-Methyl-2-pentanone (MIBK) mg/l 0.285 0.00 .25 14. 40-160 L373782-06 WGS Accolein mg/l 0.404 0.00 .25 162. 0-179 L373782-06 WGS Bromobenzene mg/l 0.059 0.00 .25 126. 37-162 L373782-06 WGS Bromobenzene mg/l 0.058 0.00 .05 126. 16-158 L373782-06 WGS Bromodichloromethane mg/l 0.058 0.00 .05 126. 45-141 L373782-06 WGS Bromodichloromethane mg/l 0.053 0.00 .05 118. 45-141 L373782-06 WGS Chlorodehrene mg/l 0.051					05		14-158	1373782-06	WG39291
2-chloroethyl vinyl ether mg/l 0.097 0.00 25 38.8 0-175 L373782-06 WGS 2-chlorotoluene mg/l 0.051 0.00 0.5 103. 35-147 L373782-06 WGS 4-Methyl-2-pentanone (MIBK) mg/l 0.285 0.00 .25 114. 40-160 L373782-06 WGS Acctolein mg/l 0.240 0.003 .25 94.7 25-157 L373782-06 WGS Benzene mg/l 0.040 0.00 .25 162. 0-179 L373782-06 WGS Bromobenzene mg/l 0.059 0.00 .25 126. 37-147 L373782-06 WGS Bromodichloromethane mg/l 0.053 0.00 .05 108.3 38-152 L373782-06 WGS Carbon tetrachloride mg/l 0.055 0.00 .05 111.2 2-168 L373782-06 WGS Chlorodbrazene mg/l 0.061 0.00 .05 102.3 <td></td> <td></td> <td>0.292</td> <td></td> <td>.25</td> <td></td> <td>32-151</td> <td></td> <td>WG392914</td>			0.292		.25		32-151		WG392914
2-chlorotoliene mg/l 0.051 0.0 0.55 103. 35-147 L373782-06 WGG 4-Chlorotoluene mg/l 0.051 0.00 0.55 103. 33-147 L373782-06 WGG Acetone mg/l 0.285 0.00 25 14. 40-160 L373782-06 WGG Acrolein mg/l 0.404 0.00 25 162. 0-179 L373782-06 WGG Bromobenzene mg/l 0.059 0.00 .05 120. 16-158 L373782-06 WGG Bromobenzene mg/l 0.058 0.00 .05 126. 37-147 L373782-06 WGG Bromodichoromethane mg/l 0.053 0.00 .05 108. 38-144 L373782-06 WGG Carbon tetrachloride mg/l 0.053 0.00 .05 108. 38-144 L373782-06 WGG Chloromethane mg/l 0.055 0.00 .05 118. 37-147					.25				WG39291
a-Chlorotoluene mg/l 0.051 0.00 .05 103. 33-147 L373782-06 WGG A-Methyl-2-pentanone (MIBK) mg/l 0.245 0.00 .25 114. 40-160 L373782-06 WGG Acctone mg/l 0.240 0.003 .25 94.7 25-157 L373782-06 WGG Acrylonitrile mg/l 0.315 0.00 .25 126. 0-179 L373782-06 WGG Bromobenzene mg/l 0.059 0.00 .25 126. 161.58 L373782-06 WGG Bromodichloromethane mg/l 0.059 0.00 .05 108. 38-1247 L373782-06 WGG Bromomethane mg/l 0.0653 0.00 .05 111. L373782-06 WGG Carbon tetrachloride mg/l 0.061 0.00 .05 112. L168 L373782-06 WGG Chloromethane mg/l 0.061 0.00 .05 102. 4-176 <									WG39291
4-Methyl-2-pentanone (MIBK) mg/l 0.285 0.00 .25 114. 40-160 L373782-06 WG Acctolein mg/l 0.404 0.003 .25 142. 0-179 L373782-06 WG Acrolein mg/l 0.404 0.00 .25 162. 0-179 L373782-06 WG Acrolein mg/l 0.315 0.00 .25 162. 0-179 L373782-06 WG Bromodichloromethane mg/l 0.048 0.00 .05 126. J37177782-06 WG Bromodichloromethane mg/l 0.048 0.00 .05 114. 45747 L373782-06 WG Bromodichloromethane mg/l 0.053 0.00 .05 108. 38-152 L373782-06 WG Chlorodibromomethane mg/l 0.053 0.00 .05 107. 33-148 L373782-06 WG Chlorodibromomethane mg/l 0.061 0.00 .05 102. 48-151 L373782-06 WG Chlorodibromomethane mg/l 0.061									WG392914
Acetone mg/l 0.240 0.003 25 94.7 25-157 1373782-06 WG Acrolein mg/l 0.404 0.00 25 162. 0.7179 1373782-06 WG Benzene mg/l 0.059 0.00 .25 126. 37-162 L373782-06 WG Bromobenzene mg/l 0.059 0.00 .05 120. 16-158 L373782-06 WG Bromodichloromethane mg/l 0.053 0.00 .05 108. 38-152 L373782-06 WG Bromomethane mg/l 0.061 0.00 .05 108. 38-152 L373782-06 WG Chlorodibromomethane mg/l 0.065 0.00 .05 111. L373782-06 WG Chlorodibromomethane mg/l 0.065 0.00 .05 107. 33-148 L373782-06 WG Chlorodibromomethane mg/l 0.061 0.00 .05 124. 4-176 L373782-06 WG Chloroberne mg/l 0.061 0.00 .05 <						114.			WG392914
Actorlein mg/l 0.404 0.00 25 162. 0-179 L373782-06 WG Berzene mg/l 0.315 0.00 .25 126. 37-162 L373782-06 WG Bromobenzene mg/l 0.048 0.00 .05 120. 16-158 L373782-06 WG Bromodichloromethane mg/l 0.058 0.00 .05 116. 45-147 L373782-06 WG Bromodichloromethane mg/l 0.058 0.00 .05 116. 45-147 L373782-06 WG Carbon tetrachloride mg/l 0.051 0.00 .05 111. 22-168 L373782-06 WG Chlorodibromomethane mg/l 0.051 0.00 .05 107. 33-148 L373782-06 WG Chloroform mg/l 0.061 0.00 .05 122. 4-176 L373782-06 WG Chloroform mg/l 0.064 0.00 .05 123. 10-174					.25	94.7			WG392914
Acrylonitrile mg/l 0.315 0.00 .25 126. 37-162 L373782-06 WGG Benzene mg/l 0.059 0.00 .05 120. 16-158 L373782-06 WGG Bromobenzene mg/l 0.048 0.00 .05 176. 45-147 L373782-06 WGG Bromoform mg/l 0.053 0.00 .05 108. 38-152 L373782-06 WGG Bromomethane mg/l 0.053 0.00 .05 110. 45-147 L373782-06 WGG Carbon tetrachloride mg/l 0.055 0.00 .05 111. 22-168 L373782-06 WGG Chlorobenzene mg/l 0.051 0.00 .05 107. 33-148 L373782-06 WGG Chlorodibromomethane mg/l 0.061 0.00 .05 122. 4-176 L373782-06 WGG Chlorodifuoropene mg/l 0.061 0.00 .05 123. 10-174 L373782-06 WGG Chlorodifuoropenee mg/l 0.064				0.00	.25	162.	0-179		WG392914
$\begin{array}{llllllllllllllllllllllllllllllllllll$			0.315		.25		37-162	L373782-06	WG392914
$\begin{array}{llllllllllllllllllllllllllllllllllll$		mg/l	0.059	0.00	.05	120.		L373782-06	WG392914
Bromoform mg/l 0.053 0.00 05 108. 38-152 L373782-06 WG Bromomethane mg/l 0.061 0.00 .05 123. 0-191 L373782-06 WG Carbon tetrachloride mg/l 0.055 0.00 .05 111. 22-168 L373782-06 WG Chlorobenzene mg/l 0.051 0.00 .05 107. 33-148 L373782-06 WG Chlorobenzene mg/l 0.051 0.00 .05 102. 48-151 L373782-06 WG Chlorobenzene mg/l 0.061 0.00 .05 123. 10-174 L373782-06 WG Chloroberthane mg/l 0.064 0.00 .05 123. 10-174 L373782-06 WG cis-1,2-Dichloroethene mg/l 0.064 0.00 .05 120. 29-156 L373782-06 WG Di-isopropyl ether mg/l 0.064 0.00 .05 120. 373782-06 </td <td>Bromobenzene</td> <td></td> <td></td> <td>0.00</td> <td>.05</td> <td></td> <td></td> <td></td> <td>WG392914</td>	Bromobenzene			0.00	.05				WG392914
Bromomethane mg/l 0.061 0.00 05 123 0-191 L373782-06 WG Carbon tetrachloride mg/l 0.055 0.00 0.05 111. 22-168 L373782-06 WG Chloroberzene mg/l 0.055 0.00 0.05 107. 33-148 L373782-06 WG Chloroberzene mg/l 0.051 0.00 0.5 102. 48-151 L373782-06 WG Chloroberthane mg/l 0.056 0.00 0.5 102. 48-151 L373782-06 WG Chloroftam mg/l 0.056 0.00 0.5 114. 37-147 L373782-06 WG Cis-1, 2-Dichloropthene mg/l 0.064 0.00 0.5 114. 37-147 L373782-06 WG Di-sopropyl ether mg/l 0.064 0.00 0.5 120. 39-160 L373782-06 WG Dibromomethane mg/l 0.058 0.00 0.5 120. 39-160 </td <td>Bromodichloromethane</td> <td>mg/l</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>WG39291</td>	Bromodichloromethane	mg/l							WG39291
Carbon tetrachloride mg/l 0.055 0.00 .05 111. 22-168 L373782-06 WG Chlorobenzene mg/l 0.053 0.00 .05 107. 33-148 L373782-06 WG Chlorobenzene mg/l 0.051 0.00 .05 102. 48-151 L373782-06 WG Chlorobtane mg/l 0.061 0.00 .05 122. 4-176 L373782-06 WG Chlorobtane mg/l 0.061 0.00 .05 123. 10-174 L373782-06 WG Chloroberthane mg/l 0.064 0.00 .05 123. 10-174 L373782-06 WG Cis-1, 2-Dichloroberthene mg/l 0.064 0.00 .05 120. 29-156 L373782-06 WG Di-isopropyl ether mg/l 0.060 0.00 .05 100. 36-152 L373782-06 WG Dichlorodifluoromethane mg/l 0.054 0.00 .05 100.	Bromoform			0.00					WG39291
Chlorobenzene mg/l 0.053 0.00 .05 107. 33-148 L373782-06 WG Chlorodibromomethane mg/l 0.051 0.00 .05 102. 48-151 L373782-06 WG Chlorodibromomethane mg/l 0.056 0.00 .05 114. 37-147 L373782-06 WG Chloromethane mg/l 0.056 0.00 .05 114. 37-147 L373782-06 WG cis-1, 2-Dichloroethene mg/l 0.064 0.00 .05 123. 10-174 L373782-06 WG cis-1, 3-Dichloropropene mg/l 0.058 0.00 .05 118. 35-148 L373782-06 WG Di-isopropyl ether mg/l 0.054 0.00 .05 110. 36-152 L373782-06 WG Dichlorodifluoromethane mg/l 0.060 0.00 .05 110. 36-152 L373782-06 WG Dichlorodifluoromethane mg/l 0.060 0.00 .05									WG39291
Chlorodibromomethane mg/l 0.051 0.00 .05 102. 48-151 L373782-06 WG Chloroethane mg/l 0.061 0.00 .05 122. 4-176 L373782-06 WG Chloroethane mg/l 0.056 0.00 .05 114. 37-147 L373782-06 WG Chloromethane mg/l 0.061 0.00 .05 123. 10-174 L373782-06 WG cis-1, 2-Dichloroptoene mg/l 0.064 0.00 .05 123. 10-174 L373782-06 WG cis-1, 3-Dichloroptoene mg/l 0.064 0.00 .05 118. 35-148 L373782-06 WG Dichlorodifluoromethane mg/l 0.060 0.00 .05 110. 36-152 L373782-06 WG Ethylbenzene mg/l 0.054 0.00 .05 106. 28-144 L373782-06 WG Isopropylbenzene mg/l 0.052 0.00 .05 106.									WG392914
Chloroethane mg/l 0.061 0.00 .05 122. 4-176 L373782-06 WG Chloroform mg/l 0.056 0.00 .05 114. 37-147 L373782-06 WG Chloromethane mg/l 0.061 0.00 .05 114. 37-147 L373782-06 WG cis-1,2-Dichloroethene mg/l 0.064 0.00 .05 129. 29-156 L373782-06 WG cis-1,3-Dichloropropene mg/l 0.064 0.00 .05 118. 35-148 L373782-06 WG Dibromomethane mg/l 0.064 0.00 .05 110. 36-152 L373782-06 WG Ethylbenzene mg/l 0.054 0.00 .05 108. 29-150 L373782-06 WG Methylterechloride mg/l 0.054 0.00 .05 108. 29-150 L373782-06 WG Methyltene Chloride mg/l 0.055 0.00 .05 108. 29-150 L373782-06 WG n-Butylbenzene mg/l 0.052									WG392914
Chloroform mg/l 0.056 0.00 .05 114. 37-147 L373782-06 WG Chloromethane mg/l 0.061 0.00 .05 123. 10-174 L373782-06 WG cis-1, 2-Dichloroethene mg/l 0.064 0.00 .05 129. 29-156 L373782-06 WG cis-1, 3-Dichloropropene mg/l 0.064 0.00 .05 118. 35-148 L373782-06 WG Di-isopropyl ether mg/l 0.054 0.00 .05 110. 36-152 L373782-06 WG Dichlorodifluoromethane mg/l 0.060 0.00 .05 100. 36-160 L373782-06 WG Ethylbenzene mg/l 0.054 0.00 .05 108. 29-150 L373782-06 WG Isopropylbenzene mg/l 0.053 0.00 .05 105. 35-147 L373782-06 WG Methylene Chloride mg/l 0.051 0.00 .05 102. <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>WG392914</td>									WG392914
Chloromethane mg/l 0.061 0.00 .05 123. 10-174 L373782-06 WG cis-1,2-Dichloroethene mg/l 0.064 0.00 .05 129. 29-156 L373782-06 WG Di-isopropyl ether mg/l 0.058 0.00 .05 118. 35-148 L373782-06 WG Di-isopropyl ether mg/l 0.064 0.00 .05 120. 39-160 L373782-06 WG Dibromomethane mg/l 0.054 0.00 .05 120. 39-160 L373782-06 WG Dichlorodifluoromethane mg/l 0.054 0.00 .05 108. 29-150 L373782-06 WG Dichlorodifluoromethane mg/l 0.053 0.00 .05 108. 29-150 L373782-06 WG Bispropylbenzene mg/l 0.053 0.00 .05 108. 29-150 L373782-06 WG Methyl tert-butyl ether mg/l 0.052 0.00 .05 105. 35-147 L373782-06 WG n-Broylbenzene mg/l </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>WG392914</td>									WG392914
cis-1,2-Dichloroethenemg/l0.0640.00.05129.29-156L373782-06WGcis-1,3-Dichloropropenemg/l0.0580.00.05118.35-148L373782-06WGDi-isopropyl ethermg/l0.0600.00.05110.35-148L373782-06WGDibromomethanemg/l0.0540.00.05110.36-152L373782-06WGDichlorodifluoromethanemg/l0.0600.00.05120.0-200L373782-06WGEthylbenzenemg/l0.0540.00.05108.29-150L373782-06WGHexachloro-1,3-butadienemg/l0.0530.00.05108.29-150L373782-06WGIsopropylbenzenemg/l0.0520.00.05108.29-150L373782-06WGMethyl tert-butyl ethermg/l0.0540.00.05113.24-167L373782-06WGNethylbenzenemg/l0.0540.00.05110.23-151L373782-06WGNaphthalenemg/l0.0510.00.05104.26-150L373782-06WGNaphthalenemg/l0.0510.00.05104.26-150L373782-06WGStyrenemg/l0.0520.00.05104.32-149L373782-06WGStyrenemg/l0.0520.00.05104.32-149L373782-06WGTetrachloroethe							37 - 147		WG39291
cis-1,3-Dichloropropene mg/l 0.058 0.00 .05 118. 35-148 L373782-06 WG Di-isopropyl ether mg/l 0.060 0.00 .05 120. 39-160 L373782-06 WG Dibromomethane mg/l 0.060 0.00 .05 110. 36-152 L373782-06 WG Dichlorodifluoromethane mg/l 0.060 0.00 .05 108. 29-150 L373782-06 WG Ethylbenzene mg/l 0.054 0.00 .05 108. 29-150 L373782-06 WG Isopropylbenzene mg/l 0.052 0.00 .05 108. 29-150 L373782-06 WG Methyl tert-butyl ether mg/l 0.052 0.00 .05 105. 35-147 L373782-06 WG Methyl tert-butyl ether mg/l 0.056 0.00 .05 113. 24-167 L373782-06 WG Methylene Chloride mg/l 0.051 0.00 .05 100. 23-151 L373782-06 WG Naphthalene mg/l							20-156		WG39291
Di-isopropyl ether mg/l 0.060 0.00 .05 120. 39-160 L373782-06 WG Dibromomethane mg/l 0.054 0.00 .05 110. 36-152 L373782-06 WG Dichlorodifluoromethane mg/l 0.064 0.00 .05 120. 0-200 L373782-06 WG Dichlorodifluoromethane mg/l 0.054 0.00 .05 108. 29-150 L373782-06 WG Ethylbenzene mg/l 0.052 0.00 .05 106. 28-144 L373782-06 WG Methyltert-butyl ether mg/l 0.052 0.00 .05 105. 35-147 L373782-06 WG Methyltert-butyl ether mg/l 0.056 0.00 .05 110. 23-151 L373782-06 WG Methylene Chloride mg/l 0.051 0.00 .05 110. 23-151 L373782-06 WG Naphthalene mg/l 0.051 0.00 .05 100. 24-160 L373782-06 WG sec-Butylbenzene mg/l									WG392914 WG392914
Dibromomethane mg/l 0.054 0.00 .05 110. 36-152 L373782-06 WG Dichlorodifluoromethane mg/l 0.060 0.00 .05 120. 0-200 L373782-06 WG Ethylbenzene mg/l 0.054 0.00 .05 108. 29-150 L373782-06 WG Hexachloro-1, 3-butadiene mg/l 0.053 0.00 .05 105. 35-147 L373782-06 WG Isopropylbenzene mg/l 0.052 0.00 .05 105. 35-147 L373782-06 WG Methyl tert-butyl ether mg/l 0.056 0.00 .05 113. 24-167 L373782-06 WG Methylene Chloride mg/l 0.054 0.00 .05 110. 23-151 L373782-06 WG n-Butylbenzene mg/l 0.051 0.00 .05 104. 26-150 L373782-06 WG n-Butylbenzene mg/l 0.053 0.00 .05 104. <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>WG392914</td>									WG392914
Dichlorodifluoromethane mg/l 0.060 0.00 .05 120. 0-200 L373782-06 WG Ethylbenzene mg/l 0.054 0.00 .05 108. 29-150 L373782-06 WG Hexachloro-1, 3-butadiene mg/l 0.053 0.00 .05 106. 28-144 L373782-06 WG Isopropylbenzene mg/l 0.052 0.00 .05 105. 35-147 L373782-06 WG Methyl tert-butyl ether mg/l 0.056 0.00 .05 113. 24-167 L373782-06 WG n-Butylbenzene mg/l 0.054 0.00 .05 110. 23-151 L373782-06 WG n-Butylbenzene mg/l 0.051 0.00 .05 102. 22-151 L373782-06 WG n-Propylbenzene mg/l 0.051 0.00 .05 104. 26-150 L373782-06 WG Naphthalene mg/l 0.052 0.00 .05 100.									WG392914
Ethylbenzene mg/l 0.054 0.00 .05 108. 29-150 L373782-06 WG Hexachloro-1,3-butadiene mg/l 0.053 0.00 .05 106. 28-144 L373782-06 WG Isopropylbenzene mg/l 0.052 0.00 .05 106. 28-144 L373782-06 WG Methyl tert-butyl ether mg/l 0.056 0.00 .05 113. 24-167 L373782-06 WG Methyl tert-butyl ether mg/l 0.054 0.00 .05 113. 24-167 L373782-06 WG n-Butylbenzene mg/l 0.051 0.00 .05 110. 23-151 L373782-06 WG Naphthalene mg/l 0.051 0.00 .05 100. 24-160 L373782-06 WG sec-Butylbenzene mg/l 0.051 0.00 .05 100. 24-160 L373782-06 WG sec-Butylbenzene mg/l 0.052 0.00 .05 100. 24-160 L373782-06 WG styrene mg/l 0.052 <td></td> <td></td> <td></td> <td></td> <td>-05</td> <td></td> <td></td> <td></td> <td>WG39291</td>					-05				WG39291
Hexachloro-1, 3-butadiene mg/l 0.053 0.00 .05 106. 28-144 L373782-06 WG Isopropylbenzene mg/l 0.052 0.00 .05 105. 35-147 L373782-06 WG Methyl tert-butyl ether mg/l 0.056 0.00 .05 113. 24-167 L373782-06 WG Methyl tert-butyl ether mg/l 0.056 0.00 .05 113. 24-167 L373782-06 WG Methylene Chloride mg/l 0.051 0.00 .05 110. 23-151 L373782-06 WG n-Butylbenzene mg/l 0.051 0.00 .05 102. 22-151 L373782-06 WG n-Propylbenzene mg/l 0.051 0.00 .05 104. 26-150 L373782-06 WG Naphthalene mg/l 0.053 0.00 .05 100. 24-160 L373782-06 WG sec-Butylbenzene mg/l 0.052 0.00 .05 104. 32-149 L373782-06 WG Styrene mg/l 0.									WG39291
Isopropylbenzene mg/l 0.052 0.00 .05 105. 35-147 L373782-06 WG Methyl tert-butyl ether mg/l 0.056 0.00 .05 113. 24-167 L373782-06 WG Methyl ene Chloride mg/l 0.054 0.00 .05 110. 23-151 L373782-06 WG n-Butylbenzene mg/l 0.051 0.00 .05 102. 22-151 L373782-06 WG n-Propylbenzene mg/l 0.051 0.00 .05 104. 26-150 L373782-06 WG Naphthalene mg/l 0.053 0.00 .05 104. 26-150 L373782-06 WG sec-Butylbenzene mg/l 0.053 0.00 .05 104. 26-150 L373782-06 WG styrene mg/l 0.053 0.00 .05 108. 28-151 L373782-06 WG styrene mg/l 0.052 0.00 .05 104. 32-149 L373782-06 WG tert-Butylbenzene mg/l 0.057 0.00									WG39291
Methyl tert-butyl ether mg/l 0.056 0.00 .05 113. 24-167 L373782-06 WG3 Methylene Chloride mg/l 0.054 0.00 .05 110. 23-151 L373782-06 WG3 n-Butylbenzene mg/l 0.051 0.00 .05 102. 22-151 L373782-06 WG3 n-Propylbenzene mg/l 0.051 0.00 .05 104. 26-150 L373782-06 WG3 Naphthalene mg/l 0.051 0.00 .05 104. 26-150 L373782-06 WG3 p-Isopropyltoluene mg/l 0.052 0.00 .05 100. 24-160 L373782-06 WG3 sec-Butylbenzene mg/l 0.052 0.00 .05 108. 28-151 L373782-06 WG3 styrene mg/l 0.057 0.00 .05 104. 32-149 L373782-06 WG3 tert-Butylbenzene mg/l 0.057 0.00 .05 115. 38-149 L373782-06 WG3 tert-Butylbenzene mg/l 0.052									WG39291
Methylene Chloride mg/l 0.054 0.00 .05 110. 23-151 L373782-06 WG n-Butylbenzene mg/l 0.051 0.00 .05 102. 22-151 L373782-06 WG n-Propylbenzene mg/l 0.051 0.00 .05 102. 22-151 L373782-06 WG Naphthalene mg/l 0.050 0.00 .05 104. 26-150 L373782-06 WG p-Isopropyltoluene mg/l 0.050 0.00 .05 108. 28-151 L373782-06 WG sec-Butylbenzene mg/l 0.052 0.00 .05 108. 28-151 L373782-06 WG Styrene mg/l 0.052 0.00 .05 104. 32-149 L373782-06 WG tert-Butylbenzene mg/l 0.057 0.00 .05 107. 36-149 L373782-06 WG tert-Butylbenzene mg/l 0.052 0.00 .05 107. 36-149 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>WG39291</td>									WG39291
n-Butylbenzene mg/l 0.051 0.00 .05 102. 22-151 L373782-06 WG n-Propylbenzene mg/l 0.051 0.00 .05 104. 26-150 L373782-06 WG Naphthalene mg/l 0.050 0.00 .05 104. 26-150 L373782-06 WG p-Isopropyltoluene mg/l 0.050 0.00 .05 100. 24-160 L373782-06 WG sec-Butylbenzene mg/l 0.052 0.00 .05 104. 32-149 L373782-06 WG styrene mg/l 0.057 0.00 .05 104. 32-149 L373782-06 WG styrene mg/l 0.057 0.00 .05 115. 38-149 L373782-06 WG tert-Butylbenzene mg/l 0.053 0.00 .05 107. 36-149 L373782-06 WG Tetrachloroethene mg/l 0.052 0.00 .05 107. 36-149 L373782-06 WG trans-1,2-Dichloroethene mg/l 0.055 0.0	Methylene Chloride								WG392914
n-Propylbenzene mg/l 0.051 0.00 .05 104. 26-150 L373782-06 WG Naphthalene mg/l 0.050 0.00 .05 100. 24-160 L373782-06 WG p-Isopropyltoluene mg/l 0.053 0.00 .05 108. 28-151 L373782-06 WG sec-Butylbenzene mg/l 0.053 0.00 .05 104. 32-149 L373782-06 WG styrene mg/l 0.057 0.00 .05 115. 38-149 L373782-06 WG tert-Butylbenzene mg/l 0.057 0.00 .05 107. 36-149 L373782-06 WG Tetrachloroethene mg/l 0.052 0.00 .05 107. 36-149 L373782-06 WG Toluene mg/l 0.052 0.00 .05 107. 36-149 L373782-06 WG trans-1,2-Dichloroethene mg/l 0.055 0.00 .05 111. 22-152								L373782-06	WG39291
Naphthalene mg/l 0.050 0.00 .05 100. 24-160 L373782-06 WG p-Isopropyltoluene mg/l 0.053 0.00 .05 108. 28-151 L373782-06 WG sec-Butylbenzene mg/l 0.053 0.00 .05 104. 32-149 L373782-06 WG Styrene mg/l 0.057 0.00 .05 115. 38-149 L373782-06 WG tert-Butylbenzene mg/l 0.057 0.00 .05 115. 38-149 L373782-06 WG Tetrachloroethene mg/l 0.053 0.00 .05 107. 36-149 L373782-06 WG Toluene mg/l 0.052 0.00 .05 107. 36-149 L373782-06 WG Toluene mg/l 0.052 0.00 .05 111. 22-152 L373782-06 WG Trans-1,2-Dichloroethene mg/l 0.059 0.00 .05 119. 11-160							26-150	L373782-06	WG39291
p-Isopropyltoluene mg/l 0.053 0.00 .05 108. 28-151 L373782-06 WG sec-Butylbenzene mg/l 0.052 0.00 .05 104. 32-149 L373782-06 WG Styrene mg/l 0.057 0.00 .05 115. 38-149 L373782-06 WG tert-Butylbenzene mg/l 0.057 0.00 .05 115. 38-149 L373782-06 WG Tetrachloroethene mg/l 0.053 0.00 .05 107. 36-149 L373782-06 WG Toluene mg/l 0.052 0.00 .05 107. 36-149 L373782-06 WG trans-1,2-Dichloroethene mg/l 0.055 0.00 .05 111. 22-152 L373782-06 WG						100.	24-160		WG39291
sec-Butylbenzene mg/l 0.052 0.00 .05 104. 32-149 L373782-06 WG Styrene mg/l 0.057 0.00 .05 115. 38-149 L373782-06 WG tert-Butylbenzene mg/l 0.053 0.00 .05 107. 36-149 L373782-06 WG Tetrachloroethene mg/l 0.053 0.00 .05 107. 36-149 L373782-06 WG Toluene mg/l 0.055 0.00 .05 107. 13-157 L373782-06 WG trans-1,2-Dichloroethene mg/l 0.055 0.00 .05 111. 22-152 L373782-06 WG				0.00		108.		L373782-06	WG39291
styrene mg/l 0.057 0.00 .05 115. 38-149 L373782-06 WG tert-Butylbenzene mg/l 0.053 0.00 .05 107. 36-149 L373782-06 WG Tetrachloroethene mg/l 0.052 0.00 .05 107. 36-149 L373782-06 WG Toluene mg/l 0.052 0.00 .05 105. 13-157 L373782-06 WG trans-1,2-Dichloroethene mg/l 0.055 0.00 .05 119. 11-160 L373782-06 WG			0.052	0.00	.05				WG39291
tert-Butylbenzene mg/l 0.053 0.00 .05 107. 36-149 L373782-06 WG3 Tetrachloroethene mg/l 0.052 0.00 .05 105. 13-157 L373782-06 WG3 Toluene mg/l 0.055 0.00 .05 111. 22-152 L373782-06 WG3 trans-1,2-Dichloroethene mg/l 0.059 0.00 .05 119. 11-160 L373782-06 WG3		mg/l		0.00					WG39291
Tetrachloroethene mg/l 0.052 0.00 .05 13-157 L373782-06 WG Toluene mg/l 0.055 0.00 .05 111. 22-152 L373782-06 WG trans-1,2-Dichloroethene mg/l 0.059 0.00 .05 119. 11-160 L373782-06 WG		mg/l		0.00					WG39291
trans-1,2-Dichloroethene mg/1 0.059 0.00 .05 119. 11-160 L373782-06 WG									WG39291
					.05				WG39291
									WG39291
									WG39291
Trichloroethene mg/1 0.059 0.00 .05 119. 18-163 L373782-06 WG	Trichloroethene	mg/l	0.059	0.00	.05	119.	18-163	L373782-06	WG392914
* Performance of this Analyte is outside of established criteria. For additional information, please see Attachment A 'List of Analytes with OC Qualifiers.'	* Performance of this Analy	rte is outside	or esta	prished o	rite	eria.	+		

For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

Page 15 of 18

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859 Tax I.D. 62-0814289

Est. 1970

Ninyo and Moore - Las Vegas Mark Gray 6700 Paradise Rd., Suite E

Las Vegas, NV 89119

Quality Assurance Report Level II L373794

January 12, 2009

		Mat	rix Spik	е				
Analyte	Units M	IS Res	Ref Res	_TV	* Rec	Limit	Ref Samp	Batch
Trichlorofluoromethane Vinyl chloride Xylenes, Total 4-Bromofluorobenzene Dibromofluoromethane Toluene-d8 a,a,a-Trifluorotoluene	mg/l mg/l mg/l	0.062 0.066 0.162	0.00	.05 .05 .15	124. 133. 108. 99.30 104.7 101.9 103.9	10-177 0-179 27-151 75-128 79-125 87-114 84-114	L373782-06 L373782-06 L373782-06 L373782-06	WG392914 WG392914 WG392914 WG392914 WG392914 WG392914 WG392914 WG392914
Tetrachloroethene 4-Bromofluorobenzene Dibromofluoromethane Toluene-d8 a,a,a-Trifluorotoluene	mg/1	0.036	0.00	.05	72.7 101.2 101.4 94.98 99.28	13-157 75-128 79-125 87-114 84-114	L373779-27	WG392986 WG392986 WG392986 WG392986 WG392986 WG392986

	1	Matrix S	pike Duplica	ate			
Analyte	Units	MSD	Ref <u>%Rec</u>	Limit	RPD Li	mi <u>t Ref S</u> amp	Batch
<pre>1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,3-5-Trimethylbenzene 1,3-5-Trimethylbenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2-Dichloropropane 2,2-Dichloropropane 1,4-Dichloropropane 2,2-Dichloropropane 3,3-Dichloropropane 3,3-Dichloropropane 3,3-Dichloropropane 3,3-Dichloropropane 3,3-Dichloropropane 3,3-Dichloropropane 3,3-Dichloropropane 3,3-Dichloropropane 3,3-Dichloropropane 3,3-Dichloropropane 3,3-Dichloropropane 3,3-Dichloropropane 3,3-Dichloropropane 3,3-Dichloropropane 3,3-Dichloropropane 3,3-Dichloropropane 3,3-Dichlo</pre>	Units mg/l	MSD 0.05 0.227 0.223	Ref %Rec 0.05 108. 0.05 109. 0.04 103. 0.05 119. 0.05 109. 0.05 109. 0.05 105. 0.05 116. 0.05 105. 0.05 105. 0.05 106. 0.05 108. 0.05 108. 0.05 103. 0.05 103. 0.05 101. 0.05 110. 0.05 102. 0.05 110. 0.05 102. 0.05 102. 0.05 102. 0.05 104. 0.05 102. 0.05 102. 0.07 143. 0.05 107. 0.28 111. 0.24 91.7	Limit 45-152 31-161 49-149 46-145 14-168 30-159 10-162 14-162 32-143 48-148 32-143 48-148 27-142 29-153 37-148 41-149 40-139 29-167 33-149 32-148 32-148 33-149 32-148 32-148 32-148 33-149 32-148 32-148 33-149 32-148 32-148 33-149 32-148 32-148 33-149 32-148 32-148 33-149 32-148 32-151 35-147 35-147 35-147 35-160 25-157	$\begin{array}{c} 4.19 & 21\\ 1.45 & 23\\ 5.45 & 22\\ 7.26 & 20\\ 0.57 & 24\\ 0.08 & 21\\ 0.46 & 23\\ 1.85 & 23\\ 3.03 & 36.65 & 23\\ 0.71 & 25\\ 1.07 & 30\\ 7.21 & 27\\ 0.77 & 27\\ 4.64 & 21\\ 1.22 & 23\\ 0.77 & 27\\ 4.64 & 21\\ 1.26 & 21\\ 1.26 & 21\\ 1.26 & 21\\ 1.26 & 23\\ 0.77 & 27\\ 4.64 & 21\\ 1.22 & 23\\ 0.77 & 27\\ 4.64 & 21\\ 1.22 & 23\\ 0.77 & 27\\ 4.64 & 21\\ 1.22 & 23\\ 0.77 & 27\\ 4.64 & 21\\ 1.22 & 23\\ 0.77 & 27\\ 4.64 & 21\\ 1.22 & 23\\ 0.77 & 27\\ 4.64 & 21\\ 1.22 & 23\\ 0.77 & 27\\ 4.64 & 21\\ 1.22 & 23\\ 0.77 & 27\\ 4.64 & 21\\ 1.22 & 23\\ 0.77 & 27\\ 4.64 & 21\\ 1.22 & 23\\ 0.77 & 27\\ 4.64 & 21\\ 1.22 & 23\\ 0.77 & 27\\ 4.64 & 21\\ 1.22 & 23\\ 0.77 & 27\\ 4.64 & 21\\ 1.22 & 23\\ 0.77 & 27\\ 4.64 & 21\\ 1.22 & 23\\ 0.77 & 27\\ 4.64 & 21\\ 1.22 & 23\\ 0.77 & 27\\ 4.64 & 21\\ 1.22 & 23\\ 0.77 & 27\\ 4.64 & 21\\ 1.22 & 23\\ 0.71 & 27\\ 2.75 & 24\\ 3.80 & 26\\ 2.86 & 28\\ 3.09 & 26\\ \end{array}$	mit Ref Samp L373782-06 L373	WG392914 WG392914
	<pre>mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l</pre>	0.23 0.38 0.31 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.24 91.7 0.40 154. 0.31 126. 0.05 120. 0.04 103. 0.05 115. 0.05 112. 0.06 126. 0.05 110. 0.05 110. 0.05 112. 0.05 110. 0.05 126. 0.06 126. blished crit	25-157 0-179 37-162 16-158 37-147 45-147 38-152 0-191 22-168 33-148 48-151 4-176 ceria.	3.09 26 5.01 39 0.28 24 0.59 21 5.58 23 0.81 20 3.64 20 2.31 35 1.32 24 4.74 22 4.02 21 3.57 27	L373782-06 L373782-06 L373782-06 L373782-06 L373782-06 L373782-06 L373782-06 L373782-06 L373782-06 L373782-06 L373782-06 L373782-06 L373782-06	WG392914 WG392914 WG392914 WG392914 WG392914 WG392914 WG392914 WG392914 WG392914 WG392914 WG392914 WG392914 WG392914 WG392914

Page 16 of 18

Ninyo and Moore - Las Vegas Mark Gray 6700 Paradise Rd., Suite E

Las Vegas, NV 89119

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Quality Assurance Report Level II

L373794

January 12, 2009

Analyte	Units	MSD	pike Di Ref		te Limit	RPD	Limit	Ref	Samp	Batch
Chloroform Chloromethane cis-1,2-Dichloropropene Di-isopropyl ether Dibromomethane Dichlorodifluoromethane Ethylbenzene Hexachloro-1,3-butadiene Isopropylbenzene Methyl tert-butyl ether Methylene Chloride n-Butylbenzene n-Propylbenzene Naphthalene p-Isopropyltoluene sec-Butylbenzene Styrene tert-Butylbenzene Tetrachloroethene Trichlorofluoromethane Vinyl chloride Xylenes, Total 4-Bromofluorobenzene Dibromofluoromethane Toluene-d8 a,a,a-Trifluorotoluene	/11/1/11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1	0.05 0.066 0.005 0.006 0.006 0.006 0.005 0.	$\begin{array}{c} 0.06\\ 0.05\\$	122. 128. 116. 120. 109. 122. 106. 111. 114. 103. 110. 114. 110. 114. 110. 111. 111. 104. 110. 111. 114. 103. 115. 104. 115. 104. 115. 104. 115. 104. 116. 116. 117. 105. 107.	$\begin{array}{c} 37-147\\ 10-174\\ 29-156\\ 35-148\\ 39-160\\ 36-152\\ 0-200\\ 28-144\\ 35-147\\ 23-151\\ 22-151\\ 22-151\\ 22-151\\ 22-151\\ 22-152\\ 32-149\\ 36-149\\ 33-153\\ 32-149\\ 36-149\\ 33-153\\ 31-157\\ 22-152\\ 11-160\\ 33-153\\ 10-177\\ 0-179\\ 27-151\\ 87-114\\ 84-114\end{array}$		28 22 21 20 26 23 32 5 22 29 25 37 26 23 22 22 22 22 22 22 22 22 22 22 22 22	L373 L373 L373 L373 L373 L373 L373 L373	3782-06 378	WG39291 WG39291
Tetrachloroethene 4-Bromofluorobenzene Dibromofluoromethane Toluene-d8 a,a,a-Trifluorotoluene	mg/l	0.03	0.03	92.4 100.5 91.8	13-157 75-128 79-125 87-114 84-114	1.72	24	L373	8779-27	WG39298 WG39298 WG39298 WG39298 WG39298 WG39298

Batch number / Run number / Sample number cross reference

		L373794-01 L373794-01	02
		L373794-03	04
		L373794-03	
WG393785:	R534434:	L373794-03	04
WG393783:	R534490:	L373794-03	04

* Calculations are performed prior to rounding of reported values .
 * Performance of this Analyte is outside of established criteria.
 For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

Page 17 of 18

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859 Tax I.D. 62-0814289

Est. 1970

Ninyo and Moore - Las Vegas Mark Gray 6700 Paradise Rd., Suite E

Las Vegas, NV 89119

Quality Assurance Report Level II

L373794

January 12, 2009

The data package includes a summary of the analytic results of the quality control samples required by the SW-846 or CWA methods. The quality control samples include a method blank, a laboratory control sample, and the matrix spike/matrix spike duplicate analysis. If a target parameter is outside the method limits, every sample that is effected is flagged with the appropriate qualifier in Appendix B of the analytic report.

> Method Blank - an aliquot of reagent water carried through the entire analytic process. The method blank results indicate if any possible contamination exposure during the sample handling, digestion or extraction process, and analysis. Concentrations of target analytes above the reporting limit in the method blank are qualified with the "B" qualifier.

Laboratory Control Sample - is a sample of known concentration that is carried through the digestion/extraction and analysis process. The percent recovery, expressed as a percentage of the theoretical concentration, has statistical control limits indicating that the analytic process is "in control". If a target analyte is outside the control limits for the laboratory control sample or any other control sample, the parameter is flagged with a "J4" qualifier for all effected samples.

Matrix Spike and Matrix Spike Duplicate - is two aliquots of an environmental sample that is spiked with known concentrations of target analytes. The percent recovery of the target analytes also has statistical control limits. If any recoveries that are outside the method control limits, the sample that was selected for matrix spike/matrix spike duplicate analysis is flagged with either a "J5" or a "J6". The relative percent difference (%RPD) between the matrix spike and the matrix spike duplicate recoveries is all calculated. If the RPD is above the method limit, the effected samples are flagged with a "J3" qualifier.

							halveiel	<u>Analvsis/Container/Dresentativa</u>	oritor of the			
Ninyo and Moore - Las Vegas	Las Vega		Arternate billing information:	ormation:								Page t of
6700 Paradise Rd Suite E) Ц										C044	4
Las Vegas,NV 89119											Prepared by:	
											H ENVIR	ENVIRONMENTAL
Report to: Mark Crow		Email:		marav@ninvoandmoore.com	o anombu						SCIEN	SCIENCE CORP.
-1			City/State	ay winny vanuu P Z h V U V							12065 Let	12065 Lebanon Road
Description: 50755605	3761 N. 54 chance 54.	h suce st.	<u>0</u>					NT -			Mt. Juliet,	Mt. Juliet, TN 37122
Phone: (702) 433-0330	Client Project #:		Lab Project #	ject #		Jun		0			Phone (80	Phone (800) 767-5859
FAX: (702) 433-0707	3025	302556002	NIN	NINYOLNV-11/5	1/5	S.	<u>анна</u> С				FAX (6	FAX (615) 758-5859
Dollected by (prim):	Site/Facility ID#	site/Facility ID#. 3761 N. Stephonic St.	P.O.#	302556002	602	- PTC)H-(it is a second		and the second
Collected by (signature):	Rush? (Lab MUST Be Noti	fied)	Date Results Needed	's Needed	N ^{#1}	lm/				Account of the second of the s	NV- (isource only)
Than a KI	Next Day.	100	%00%			IJZ	Лm				Templeter Proving 155	34513 P262906
hmmediately Packed on Ice NY	Two Day		50%		X I Yes	oz (2	040	Uen	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Coollect	
	Three Day .	•••••••••••••••••••••••••••••••••••••••		FAX7N0	, , , , , , , , , , , , , , , , , , ,	of Cotrs 196	97				Shipped With the Post	A-Saver at a
Sample ID	Comp/Grab	Matrix*	Depth	Date	Time	875) 					Remarks/Contaminant	Sample # (lab only)
T-MB-TMM	Gb	GW		11/6/08	14:15	4 😹	X				Lab to Judian	43 B 1910
WW7-6W-1	62	GW			14:30	2	X	ideia.				
		GW				2	X					
		GW				2	X	and a				
		GW				2	X	inbalanan Tira tara				
		GW				2	X	1888				
0	40	GW			15:00	* *	4				Temo blank	
WW1- CW-1	99	GW			14 25	<u>ب</u>	×	X				$\phi \rightarrow \phi$
WW 7- GW-1	64	GW)	14730	1		X				30
"Matrix: SS - Soil GW - Groundwater WW - WasteWater DW - Drinking Water OT - Other	/ - WasteWater D	W - Drinking Wate	r OT - Other						1		E	
			<	-	(Hd		I cmp	

Remarks:

H

Other

L255 2107 Samples returned via: UDFS

9637

Received by: (Signature)

Received by:

ime:

Date:

ime:

Date:

Reinquished 1

Keinquist

14:00 Time:

5 ې

Date 2

Refinguished by:

Flow

WWI-GW-I incident 2dd. for Lzb QC.

Mark Gray Ninyo & Moore 6700 Paradise Road

Las Vegas, NV 89119

Suite E

ANALYTICAL REPORT

Report Date: November 17, 2008

Phone: 702-433-0330

E-mail: mgray@ninyoandmoore.com

Client Project ID: Ninyo & Moore 111108 DCL Workorder: 8316025 DCL Project Manager: Frank Smith

Analytical Results

Analytical Results			
Sample ID: BTR1-SWP-1M	Media: \	Wipe	Collected: 11/6/2008
Lab ID: 8316025001	Sampling Location: 376	1 N. Stephanie	Received: 11/11/2008
Method: Illicit Drugs by LC/MS	Sampling Par	rameter: Area 100 cm ²	Analyzed: 11/13/2008
Analyte	ug/sample RL (ug/sample)	
Methamphetamine	<0.10	0.10	
Sample ID: <u>BTR1-SWP-4M</u> Lab ID: 8316025002	Media: Nedia: Nedia: Sampling Location: 376		Collected: 11/6/2008 Received: 11/11/2008
Method: Illicit Drugs by LC/MS	Sampling Par	rameter: Area 100 cm²	Analyzed: 11/13/2008
Analyte	ug/sample RL (ug/sample)	
Methamphetamine	<0.10	0.10	
Sample ID: <u>KTN1-SWP-7M</u> Lab ID: 8316025003	Media: \ Sampling Location: 376		Collected: 11/6/2008 Received: 11/11/2008
Method: Illicit Drugs by LC/MS	Sampling Par	rameter: Area 100 cm²	Analyzed: 11/13/2008
Analyte	ug/sample RL (ug/sample)	
Methamphetamine	<0.10	0.10	
Sample ID: <u>KTN1-SWP-10M</u> Lab ID: 8316025004	Media: \ Sampling Location: 376	•	Collected: 11/6/2008 Received: 11/11/2008
Method: Illicit Drugs by LC/MS	Sampling Par	rameter: Area 100 cm ²	Analyzed: 11/13/2008
Analyte	ug/sample RL (ug/sample)	
Methamphetamine	0.45	0.10	
Sample ID: <u>KTN1-SWP-13M</u> Lab ID: 8316025005	Media: V Sampling Location: 376		Collected: 11/6/2008 Received: 11/11/2008
Method: Illicit Drugs by LC/MS	Sampling Par	rameter: Area 100 cm ²	Analyzed: 11/13/2008
Analyte	ug/sample RL (ug/sample)	
Methamphetamine	<0.10	0.10	

IHREP-V9.7

ANALYTICAL REPORT

Client Project ID: Ninyo & Moore 111108 DCL Workorder: 8316025 DCL Project Manager: Frank Smith

Analytical Results		
Sample ID: <u>BTR1-SWP-31</u> Lab ID: 8316025006	Media: Wipe Sampling Location: 3761 N. Stephanie	Collected: 11/6/2008 Received: 11/11/2008
Method: NIOSH 6005	Sampling Parameter: Area 100 cm ²	Analyzed: 11/15/2008
Analyte	ug/sample RL (ug/sample)	
lodine	<18 18	
Sample ID: BTR1-SWP-6I Lab ID: 8316025007	Media: Wipe Sampling Location: 3761 N. Stephanie	Collected: 11/6/2008 Received: 11/11/2008
Method: NIOSH 6005	Sampling Parameter: Area 100 cm ²	Analyzed: 11/15/2008
Analyte	ug/sample RL (ug/sample)	
lodine	<18 18	
Sample ID: <u>KTN1-SWP-8I</u> Lab ID: 8316025008	Media: Wipe Sampling Location: 3761 N. Stephanie	Collected: 11/6/2008 Received: 11/11/2008
Method: NIOSH 6005	Sampling Parameter: Area 100 cm ²	Analyzed: 11/15/2008
Analita	ug/sample RL (ug/sample)	
Analyte Iodine	<18 18 18 18 18 18 18 18 18 18 18	Collected: 11/6/2008
lodine Sample ID: <u>KTN1-SWP-11I</u> Lab ID: 8316025009		
lodine Sample ID: <u>KTN1-SWP-11I</u> Lab ID: 8316025009	<18 18 Media: Wipe Sampling Location: 3761 N. Stephanie	Received: 11/11/2008
Iodine Sample ID: <u>KTN1-SWP-11I</u> Lab ID: 8316025009 Method: NIOSH 6005	<18 18 Media: Wipe Sampling Location: 3761 N. Stephanie Sampling Parameter: Area 100 cm ²	Collected: 11/6/2008 Received: 11/11/2008 Analyzed: 11/15/2008
Iodine Sample ID: <u>KTN1-SWP-11I</u> Lab ID: 8316025009 Method: NIOSH 6005 <u>Analyte</u> Iodine Sample ID: <u>BTR1-SWP-2L</u>	<18 18 Media: Wipe Sampling Location: 3761 N. Stephanie Sampling Parameter: Area 100 cm ² ug/sample RL (ug/sample)	Received: 11/11/2008 Analyzed: 11/15/2008 Collected: 11/6/2008
Iodine Sample ID: <u>KTN1-SWP-11I</u> Lab ID: 8316025009 Method: NIOSH 6005 Analyte Iodine Sample ID: <u>BTR1-SWP-2L</u> Lab ID: 8316025010	<18	Received: 11/11/2008 Analyzed: 11/15/2008 Collected: 11/6/2008 Received: 11/11/2008 Prepared: 11/12/2008
Iodine Sample ID: <u>KTN1-SWP-11I</u> Lab ID: 8316025009 Method: NIOSH 6005 Analyte Iodine Sample ID: <u>BTR1-SWP-2L</u> Lab ID: 8316025010	<18	Received: 11/11/2008 Analyzed: 11/15/2008 Collected: 11/6/2008 Received: 11/11/2008 Prepared: 11/12/2008
Iodine Sample ID: <u>KTN1-SWP-11I</u> Lab ID: 8316025009 Method: NIOSH 6005 Analyte Iodine Sample ID: <u>BTR1-SWP-2L</u> Lab ID: 8316025010 Method: NIOSH 7082	<18	Received: 11/11/2008 Analyzed: 11/15/2008 Collected: 11/6/2008 Received: 11/11/2008 Prepared: 11/12/2008
Iodine Sample ID: KTN1-SWP-11I Lab ID: 8316025009 Method: NIOSH 6005 Analyte Iodine Sample ID: BTR1-SWP-2L Lab ID: 8316025010 Method: NIOSH 7082 Analyte Lead Sample ID: BTR1-SWP-5L	<18	Received: 11/11/2008 Analyzed: 11/15/2008 Collected: 11/6/2008 Received: 11/11/2008 Prepared: 11/12/2008 Analyzed: 11/17/2008 Collected: 11/6/2008
Iodine Sample ID: <u>KTN1-SWP-11I</u> Lab ID: 8316025009 Method: NIOSH 6005 Analyte Iodine Sample ID: <u>BTR1-SWP-2L</u> Lab ID: 8316025010 Method: NIOSH 7082 Analyte	<18	Received: 11/11/2008 Analyzed: 11/15/2008 Collected: 11/6/2008 Received: 11/11/2008 Prepared: 11/12/2008 Analyzed: 11/17/2008 Collected: 11/6/2008 Received: 11/11/2008 Prepared: 11/12/2008
Iodine Sample ID: KTN1-SWP-11I Lab ID: 8316025009 Method: NIOSH 6005 Analyte Iodine Iodine Sample ID: BTR1-SWP-2L Lab ID: Lab ID: 8316025010 Method: NIOSH 7082 Analyte Lead Sample ID: BTR1-SWP-5L Lab ID: 8316025011	<18	Received: 11/11/2008 Analyzed: 11/15/2008 Collected: 11/6/2008 Received: 11/11/2008 Prepared: 11/12/2008 Analyzed: 11/17/2008

ANALYTICAL REPORT

Client Project ID: Ninyo & Moore 111108 DCL Workorder: 8316025 DCL Project Manager: Frank Smith

Analytical Results

Method: NIOSH 7082	Sam	pling Parameter: Area 100 cm²	Prepared: 11/12/2008
Analyte	ug/sample	RL (ug/sample)	Analyzed: 11/17/2008
Lead	<2.5	2.5	
Sample ID: KTN1-SWP-12L		Media: Ghost Wipe	Collected: 11/6/2008
Lab ID: 8316025013	Sampling Locati	on: 3761 N. Stephanie	Received: 11/11/2008
Method: NIOSH 7082	Sam	pling Parameter: Area 100 cm ²	Prepared: 11/12/2008 Analyzed: 11/17/2008
Analyte	ug/sample	RL (ug/sample)	
Lead	<2.5	2.5	
Sample ID: KTN1-SWP-15L		Media: Ghost Wipe	Collected: 11/6/2008
Lab ID: 8316025014	Sampling Locati	ion: 3761 N. Stephanie	Received: 11/11/2008
Method: NIOSH 7082	Samp	pling Parameter: Area 100 cm²	Prepared: 11/12/2008 Analyzed: 11/17/2008
Analyte	ug/sample	RL (ug/sample)	
Lead	<2.5	2.5	
Sample ID: KTN1-SWP-14		Media: Wipe	Collected: 11/6/2008
Lab ID: 8316025015	Sampling Locati	ion: 3761 N. Stephanie	Received: 11/11/2008
Method: NIOSH 6005	Sam	pling Parameter: Area 100 cm ²	Analyzed: 11/15/2008
Analyte	ug/sample	RL (ug/sample)	
lodine	<18	18	

Report Authorization

Method: Illicit Drugs by LC/MS	
Thomas Bosch	Thomas T. McKay
Analyst	Peer Review
Method: NIOSH 6005	
Laurie K. Jones	Thomas T. McKay
Analyst	Peer Review

ANALYTICAL REPORT

Client Project ID: Ninyo & Moore 111108 DCL Workorder: 8316025 DCL Project Manager: Frank Smith

Report Authorization

Method: NIOSH 7082				
Rosemary Hanks	3	Kyle Kuwit	zky	
Analyst		Peer Revie	w	

Definitions

LOD = Limit of Detection = MDL = Method Detection Limit, A statistical estimate of method/media/instrument sensitivity.

LOQ = Limit of Quantitation = RL = Reporting Limit, A verified value of method/media/instrument sensitivity.

ND = Not Detected, Testing result not detected above the LOD or LOQ.

** No result could be reported, see sample comments for details.

< This testing result is less than the numerical value.

() This testing result is between the LOD and LOQ and has higher analytical uncertainty than values at or above the LOQ.

General Lab Comments

The results provided in this report relate only to the items tested.

Samples were received in acceptable condition unless otherwise noted.

Samples have not been blank corrected unless otherwise noted.

This test report shall not be reproduced, except in full, without written approval of DataChem Laboratories, Inc.

DataChem Laboratories, Inc. is accredited by AIHA for specific fields of testing as documented in its current scope of accreditation (ID#101574) which is available on request by contacting your project manager or view on the internet at http://www.aiha.org. The quality systems implemented in the laboratory apply to all methods performed by DataChem regardless of this current scope of accreditation which does not include performance based methods, modified methods, and methods applied to matrices not listed in the methods.

DataChem Laboratories, Inc. provides professional analytical services for all samples submitted. DataChem Laboratories, Inc. is not in a position to interpret the data and assumes no responsibility for the quality of the samples submitted.

	830025
	ANALYTICAL REQUEST FORM
8 316025	1. 🕅 REGULAR Status 23634/3757/
LABORATORIES, INC.	RUSH Status Requested - ADDITIONAL CHARGE RESULTS REQUIRED BY DATE CONTACT DATACHEM LABS PRIOR TO SENDING SAMPLES
2. Date 11/6/08 Purchase Order No. 3025560	
3. Company Name Ninyu & Moure	DCL Project Manager
Address 6700 Paradise Rd., svite E	5. Sample Collection
Las Vegas, NV 89119	Sampling Site 3761 N. Stephanic
Person to Contact Mark Grzy	Industrial Process
Telephone (702) 433-0330	Date of Collection 11/6/08
Fax Telephone (7°2) 433-0707	Time Collected 13:00 - 13:20
E-mail Address <u>Mgrzy@n:nyoznamoove.c</u>	Date of Shipment 11/7/08
Billing Address (if different from above)	Chain of Custody No. D (
	6. How did you first learn about DataChem?

7. REQUEST FOR ANALYSES

control of a construction with the second

1

Laboratory Use Only	Client Sample Number	Matrix*	Sample Volume	ANALYSES R	EQUESTED - Us	e method numbe	r if known	Units**
•	BTRI-SWP-1M	gauze.	100 cm	meth	HMAM	9111	1	uy/con
	BTRI-SWP-ZL	ghust wipe		lead	NMAM	9100	3	
	BTRL - SHA-35	97070		Todike	NMAM	6.005	2	
	BTAL - SWR-4M			meth	NMAM	9111	1	
	BTRI-SWP-54 0	ghost Wipe		lezd	NMAM	9100	3	
	BTRI-SWP-6IL	92000		indine	NMAM	6005	2	
	KINL-SWP-7M	92020		meth	NMAM	9111	1	
	KINI-SWP-8ID	gaun		indine	NMAM	6005	3	
	KTN 1-SWP-9L 1	gh-st wipe		lerd	NMAM	9100	2	
	KTALL-SW.P-IDM			ph-cotha	NMAN	9111	1	
	KTNI-SWP-ILI.			indine	NMAM	6005	3	
	KTNI-SWP-12L	ghost wipe		lezd	NMAM	9100	2	
	KTNL-SWR-+3M	9712c		methy	NMAM	9/11	1	
	KTNI-SWP-14I	92020		iodine	NMAN	60.05	3	

Specify: Solid sorbent tube, e.g. Charcoal; Filter type; Impinger solution; Bulk sample; Blood; Urine; Tissue; Soil; Water; Other
 ** 1. μg/sample 2. mg/m³ 3. ppm 4. % 5. μg/m³ 6. (other) Please indicate one or more units in the column entitled Units**
 Comments

Possible Contamination and/or Chemical Hazards	
7. Chain of Custody (Optional)	
Relinquished by March C. Arm	Date/Time 11/7/08, 11:00
Received by	Date/Time 11/11/08 9.50
Relinquished by	Date/Time
Received by	Date/Time

960 West LeVoy Drive / Salt Lake City, UT 84123 800-356-9135 or 801-266-7700 / FAX: 801-268-9992 DATACHEM LABORATORIES, INC.

			ANALY	TICAL REQUEST FORM	
	DATA		1. X REGULA		-
	CHEM Aboratories, inc.		RESULT	atus Requested - ADDITIONAL CHARGE S REQUIRED BY DATE T DATACHEM LABS PRIOR TO SENDING SAMPLES	
2. Date 11/6/08	_ Purchase Order No. 30	25560	102	4. Quote No.	
3. Company Name	linyo + Moore			DCL Project Manager	
Address 67	00 Paradise Ro	a., suite	E _	5. Sample Collection	
	s Veg25 NV 8;			Sampling Site 3761 X/ Stephania	e
	Mark Grzy			Industrial Process	
Telephone (702) 4				Date of Collection	
	433-0707			Time Collected 13:20	
· · · ·	gray @ niny o and		.com		_
Billing Address (if different				Chain of Custody No. p 2-	
,	,			6. How did you first learn about DataChem?	
				,	
7. REQUEST FOR ANAL	YSES		_		
Laboratory Use Only	Client Sample Number	Matrix*	Sample Volume	2012	Inits"
	VTX11 SWP-151	ghost	100002	Lad NMAN LOUSE 7 W	1/102

Laboratory Ose Only	Cheffit Sample Humber	INIGUIX	Sample Volume		Units
•	KTNI-SWP-15L	ghost wipe	100 Cm2	leve NMAN 2003 Z	"1/cm
				<u>_</u>	
	<u> </u>				 .
····					
					_

Specify: Solid sorbent tube, e.g. Charcoal; Filter type; Impinger solution; Bulk sample; Blood; Urine; Tissue; Soil; Water; Other
 ** 1. μg/sample 2. mg/m³ 3. ppm 4. % 5. μg/m³ 6. (other) Please indicate one or more units in the column entitled Units**
 Comments

Possible Contamir 7. Chain of Cust	nation and/or Chemical Hazards _ ody (Optional)			
Relinquished by	march	ing /	Date/Time	11/7/08 11:00
Received by	MAK	λ	Date/Time	11/11/08 9:5
Relinquished by			Date/Time	
Received by			Date/Time	

960 West LeVoy Drive / Salt Lake City, UT 84123 800-356-9135 or 801-266-7700 / FAX: 801-268-9992 DATACHEM LABORATORIES, INC.

APPENDIX D

DATA VALIDATION REPORT

TO: Greg Beck, Ninyo & Moore

January 22, 2009

FROM: Donna Breaux, DataVal, Inc.

Ninyo & Moore Project No. 302556002

DATA REVIEW SUMMARY REPORT FOR 3761 NORTH STEPHANIE STREET, PAHRUMP, NV

LABORATORY: Environmental Science Corporation, Mt. Juliet, TN

SAMPLING DATE: November 6, 2008

Data review of a Level II laboratory data package was performed according to the guidelines outlined in the U. S. Environmental Protection Agency Contract Laboratory Program National Functional Guidelines for Organic Data Review, October, 1999 and the U. S. Environmental Protection Agency Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004.

The data were reviewed for holding times, surrogate recoveries, laboratory method blanks, laboratory control samples, matrix spikes and matrix spike duplicates, laboratory duplicates and field QC samples.

The following paragraphs highlight the essential findings of the data review effort:

- I. <u>Volatile Organic Compounds (VOCs) by GC/MS (8260B)</u> Overall, the data are usable as reported. Qualification was not required.
 - A. <u>Holding Times</u> Technical holding time criteria were met for all project samples.
 - B. <u>Surrogate Recoveries</u> Surrogate spike recoveries met QC acceptance criteria for all project samples.
 - C. Blanks

Target analytes were not observed in any laboratory method blanks associated with the project samples.

D. Laboratory Control Samples

All QC criteria were met for the laboratory control samples associated with the project samples, with the following exception:

 The percent recoveries for acrolein were outside the 6% - 182% laboratory acceptance criteria in QC samples WG392914 LCS / LCSD at 186% / 194%. The associated project samples were non-detect for acrolein, and qualification was not required. (QC Batch WG392914)

Site: 3761 North Stephanie Street, Pahrump, NV

E. <u>Matrix Spike/Matrix Spike Duplicate</u>

All QC criteria were met for the matrix spikes and matrix spike duplicates associated with the project samples, with the following exception:

 The relative percent difference (RPD) for 2-chloroethyl vinyl ether was outside the 75% laboratory acceptance criteria in QC samples L373782-06 MS/MSD. The parent sample was from a site unrelated to the project site, and qualification of project samples was not required. (QC Batch WG392914)

II. Various General Chemistry Methods

Overall, the data are usable as reported with any added qualifiers. Qualification was required for the reason noted in Section A.

A. Holding Times

Technical holding time criteria were met for all project samples, with the following exceptions:

- Samples WW1-GW-1 (L373794-03) and WW7-GW-1 (L373794-04) were analyzed 4 days after sampling for pH analysis. It is recommended that samples be analyzed for pH immediately upon sampling. The results for pH in these samples were qualified as estimated (J).
- 2. Samples WW1-GW-1 (L373794-03) and WW7-GW-1 (L373794-04) were analyzed 1 day past the 7-day analysis holding time for reactive sulfide. The non-detect results for reactive sulfide in these samples were qualified as estimated (UJ).

See Table 2 of this report for a summary of samples qualified for missed analysis holding time.

B. Blanks

Target analytes were not observed in any laboratory method blanks associated with the project samples.

- C. <u>Laboratory Control Samples</u> All QC criteria were met for the laboratory control samples associated with the project samples.
- D. <u>Matrix Spike/Matrix Spike Duplicate</u> Matrix spike/matrix spike duplicates were not analyzed with the project samples for general chemistry analyses.
- E. <u>Laboratory Duplicate Samples</u> All QC criteria were met for the laboratory duplicate samples associated with the project samples.

FIELD DUPLICATES

Field duplicate precision was evaluated by calculating the relative percent difference (RPD) between detected results in the original sample and its associated duplicate. The control limit used for field duplicates was an RPD less than or equal to 50 percent, or the absolute difference of the two results must be less than the reporting limit for those analytes that were at or near the detection limit. One sample was collected in duplicate for this sampling event.

Project Sample Primary ID	Laboratory Sample ID	· · · ·	Laboratory Sample ID
WW1-GW-1	L373794-01	WW7-GW-1	L373794-02
WW1-GW-1	L373794-03	WW7-GW-1	L373794-04

The attached Table 3 summarizes the field duplicate sample results. The detected results of the original sample and the associated duplicate sample were compared and the calculated RPDs reported. All RPDs met the 50 percent precision control limit requirement.

SUMMARY

The attached Table 1 lists the samples and analyses included in the data review effort. The attached Table 2 summarizes the data qualifications required for the project samples included in the data packages.

USABILITY

The quality control criteria were reviewed, and other than those discussed above, all criteria were met and the data are considered acceptable. Estimated sample results (J/UJ) are usable only for limited purposes. Based upon the cursory data review, all other results are considered valid and usable for all purposes.

VALIDATION QUALIFIERS IDENTIFICATION

The definitions of the following qualifiers are prepared in accordance with the document "USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review," October 2004.

- U The analyte was analyzed for, but was not detected above the level of the reported value. The reported value is either the sample quantitation limit or the sample detection limit for all the analytes except Cyanide (CN) and Mercury (Hg).
- J The associated value is an estimated quantity. The analyte was analyzed for and was positively identified, but the reported numerical value may not be consistent with the amount actually present in the environmental sample.
- R The data are unusable. The analyte was analyzed for, but the presence or absence of the analyte can not be verified.
- UJ A combination of the "U" and the "J" qualifier. The analyte was analyzed for but was not detected. The reported value is an estimate and may be inaccurate or imprecise.

3761 North Stephanie Street Pahrump, Nevada Sample Summary Table 1

Site	Laboratory	Date		Sample
Sample ID	Sample ID Sample ID Sampled	Sampled	Analyses	Type
WW1-GW-1	WW1-GW-1 L373794-01 6-Nov-08	6-Nov-08	Volatile Organic Compounds (8260B)	Water (1)
WW7-GW-1	WW7-GW-1 L373794-02 6-Nov-08	6-Nov-08	Volatile Organic Compounds (8260B)	FD (1)
WW1-GW-1	L373794-03	6-Nov-08	WW1-GW-1 L373794-03 6-Nov-08 General Chemistry Parameters (1, 2, 3, 4) Water (2)	Water (2)
WW7-GW-1	L373794-04	6-Nov-08	WW7-GW-1 L373794-04 6-Nov-08 General Chemistry Parameters (1, 2, 3, 4) FD (2)	FD (2)

FD: Field duplicate of previous numbered sample, (1), (2), etc.

General Chemistry Parameters

- (1) Corrosivity (9040C)
- (2) Flashpoint (D93/D1010A)(3) Reactive Cyanide (9012B)(4) Reactive Sulfide (9034/9030B)

Table 2 Qualified Data Summary 3761 North Stephanie Street Pahrump, Nevada

		time	time	time	time	
	Reason	Missed analysis holding time				
	Qualifier	ſ	n	-	n	
	Analyte	Hd	Reactive sulfide	Hđ	Reactive sulfide	
Analysis	Method	9040C	9034/9030B	9040C	9034/9030B	
Laboratory	Q	L373794-03	L373794-03	L373794-04	L373794-04	
Sample	Q	WW1-GW-1	WW1-GW-1	WW7-GW-1	WW7-GW-1	

Original	Laboratory			Original	Duplicate	Laboratory	Duplicate	
Sample ID	٩	Matrix	Analyte	Results*	Sample ID	Q	Results*	RPD
WW1-GW-1	L373794-01	Water	All VOCs	ND	WW7-GW-1	L373794-02	ND	NA
WW1-GW-1	L373794-03	Water	Corrosivity	7.4	WW7-GW-1	L373794-04	7.7	-4.0%
WW1-GW-1	L373794-03	Water	Flashpoint	ND	WW7-GW-1	L373794-04	ND	NA
WW1-GW-1	L373794-03	Water	Reactive cyanide	ND	WW7-GW-1	L373794-04	ND	NA
WW1-GW-1	L373794-03	Water	Reactive sulfide	DN	WW7-GW-1	L373794-04	ND	NA

Table 3 Summary of Field Duplicates 3761 North Stephanie Street Pahrump, Nevada *Units for flashpoint analysis are degrees farenheit. Units do not apply for corrosivity analysis. Units for all other analyses are mg/L.

ND: Not detected NA: Not applicable. Calculation of the relative percent difference between the sample result and the duplicate sample result is not applicable. RPD: Relative percent difference